Model - High Valley 1300
Distributed by: Stoll Fireplace
EPA Certification Testing
Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc. January 28, 2013

11785 SW Highway 212 – Suite 305 Clackamas, OR 97015-9050 (503) 650-0088 WWW.DIRIGOLAB.COM

January 28, 2013

Table of Contents:

Table of Contents:	
Affidavit:	
Introduction:	4
Wood heater Application Form:	4
Technician Notes:	
Wood Heater Identification:	8
Results: Emissions	
Table 1	C
Table 2	
Results: Efficiency	
Figure 1: Overall Weighted Average Efficiency (HHV)	
Table 3: Test Condition Summary	
Table 4: Heater Dimensions	
Figure 2: Front	12
Figure 3: Side	12
Figure 4: Firebox	13
Figure 5: Air Flow Schematic	14
Figure 6: Convection Air Schematic	14
Figure 7: Primary Air	15
Figure 8: Primary Air Slide	15
Figure 9: Fuel Load –Side View	16
Figure 10: Fuel Load: Top/ front view	16
Figure 11: Fuel loaded	17
Figure 12: Door Shut	17
Sampling Locations:	
Figure 13: Sample Points	18
Figure 14: Traverse Points	18
Sampling Methods:	
Sampling and Analytical Procedures:	
Analytical Methods Description:	

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

Quality Control and Assurance Procedures and Results:	20
Figure 15: Sealed unit	20
Appendices:	21
Appendix A: Sampling and Analytical Procedures	21
Appendix B: Participants	21
Appendix C: Updates	21
Appendix D: Drawings	22
Appendix E: 10 Hour Break-in	
Appendix F: Run Information	
Run 1:	
Run 2:	
Run 3:	
Run 4:	
Supporting Data and Notes	
Appendix G: Calibration and Q/A	
Appendix H: Example Calculations	
Appendix I: Installation and Operations Manual	

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Affidavit:

All testing and associated procedures were conducted at Dirigo Laboratories beginning 11/26/2012 and ending on 12/3/2012. Dirigo Laboratories is located at 11785 SE Highway 212 – Suite 305, Clackamas, OR 97015-9050. All EPA protocols from Methods 1, 2, 3, 4, 5 and 28 were followed in the testing, sampling, analysis, and calibrations for these tests and all results are based on these methods. Particulate sampling was performed per EPA Method 5G sampling option 3 and ASTM E2515 Standard Test Method for Determination of Particulate Matter Emissions Collected in a Dilution Tunnel. Efficiency was calculated using CAN/CSA-B415.1-10 Performance Testing of Solid-Fuel Burning Heating Appliances.

Dirigo Laboratories is accredited by the U.S. Environmental Protection Agency for the certification and auditing of wood heaters pursuant to subpart AAA of 40 CFR Part 60, New Source Performance Standards For Residential Wood Heaters- Methods 28, 28A, 28 OWHH, 5G, 5H. Certificate Numbers 9 and 9M (mobile). See Appendix H for Certification.

The following people were associated with the testing, analysis and report writing associated with this project.

John Steinert, President	Signature	Date		
Gary Nelke CMfgE, Vice-President	Signature	Date		
,	Signature	bate		
Ben Nelke, Technician	Signature	Date		

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Introduction:

Stoll Fireplace, Inc.- located at 153 Highway 201, Abbeville, SC 29620 - contracted with Dirigo Laboratories, Inc. to perform EPA certification testing on their High Valley Model 1300 Free standing wood stove. Efficiency testing was also performed per CSA B-415.1-10 "Performance Testing of Solid-Fuel Burning Heating Appliances". All testing was performed at Dirigo Laboratories, 11785 SE Highway 212 – Suite 305, Clackamas, OR 97015

Wood heater Application Form:

	Wood Heater Information Processing System Application Form					
	Application Type					
1.0	Administrative Information					
1.1	Wood Heater Model Name: High Valley					
1.1a	Wood Heater Model Number: 1300					
1.1b	Wood Heater Certification Number (not applicable for initial certification)					
1.2	Wood Heater Type (catalytic, Non Catalytic, other): Non Catalytic					
1.3	Manufacturer Name: Stoll Trailers, Inc.					
1.3a	Manufacturer Street Address: 185 Highway 201 ,					
1.3b	Manufacturer State and Zip Code: Abbeville, SC 29620					
1.3c	Manufacturer Telephone Number: 1-800-421-0771					
1.3d	Manufacturer EIN Brad Stoll Brad@stolltrailers.com					
1.4	Owner, Corporate Office or authorized representative to whom correspondence should be addressed. Brad Stoll					
1.4a	Designated Representative Name: Brad Stoll					
1.4b	Designated Representative Title: President					
1.4c	Designated Representative Mailing Address: 185 Highway 201 Abbeville, SC 29620					
1.4d	Designated Representative Telephone Number: 1-800-421-0771					
1.5	Annual Production Volume for this model for the next two years: Less than 2500 year					
2.0	Testing Information					
2.1	Name of Laboratory: Dirigo Laboratories, Inc.					
2.2	Test Notification Date: 7/4/2012					
2.3	Dates of Certification Tests: 9/26/2012 to 9/27/2012					
2.4	Test Method used for certification: Method 28, Method 5G option 3					
2.5	Test Result Summary: See Report	Page 9				
2.5.1	Test Result Grams/Hour: See Report	Page 9				
2.5.2	Emission Rate Plot: See Report	Page 9				

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

2.0				ormanon i i	JCCSSIII	g bysten	п л	pplication F	OI III	
3.0	Test Repor		T		XX71	III	/1 .	1 NT1		Cover
3.a1				1 1		Heater N	лоае	l Number:		Cover
3.a2			ime, Loc	cation and altit	uae		A 1	1		Dode 0.4
	<u>Laboratory</u>			<u>Location</u>	D		<u>Altit</u>			Page 3,4
	Dirigo Labo			Clackamas, O			30 fe			
3.a3		Test Information date wood heater information received, data of tests, sampling method								
	used, numb			C.T.	- C	1. 34.1		// // D		Page 9
	Date Receiv	ved	Date of			ling Meth	od	# Test Runs	'	
2 4		7/3/12 9/26/12 to 9/27/12 5g-3 4 Identify any variations in the certification test from the published test methods						D1 / D		
3.a4										N/A
3.b1	Table of Re emission ra			icreasing burn	rate) te	st run nur	mber	, burn rate, par	ticulate	
	Run #	Burn F	Rate_	Emission Ra	te H	eat Outpi	ut	<u>Efficiency</u>		
										Page9
3.b2	Summary o	f other data	a – Test	facility conditi	ions, su	rface tem	perat	ure averages, c	atalyst	Pode 11
	temperature	e averages,	pretest	weights, test fu	el charg	ge weight	s, ru	n times	·	Page 11
3.b3	Discussion	 specific t 	est run j	problems and s	solution	S				N/A
3.c1				sions – volume						Page 11
3.c2	Firebox Co	nfiguration	– air su	pply locations	and ope	eration, ai	ir sup	pply introduction	on	Appendix D
	location, re	fractory loc	cation, b	affle and by-pa	ass loca	tion, and	oper	ation (include l	ine	Page 12-15
	drawings ar	nd photogra	aphs							
3.c3								ed adjustment		Page 15
3.c4								el crib descrip	tion	Page 16-17
				ograph), test fu						Appendix F
3.d1			ation rel	ative to wood	heater (include d	lrawi	ng or photogra	ph)	Page 18
3.e1	Sampling M									Page 18
3.e2	Analytical I									Page 19
3.f1		procedures	and res	sults, certificati	ion proc	edures, s	ampl	ing and analys	is	Appendix G
	procedures									1.1.
3.f2							ecks,	volume meter	checks,	Appendix G
	stratification (velocity) checks, proportionality results.									
3.g1	Results and Sample Calculations							Appendix H		
3.g2	Raw Field Data							Appendix F		
3.g3	Sampling and Analytical Procedures							Appendix A		
3.g4	Analytical Data								Appendix F	
3.g5		· · · · I · · · ·								Appendix B
3.g6	Sampling a			rds						Appendix A
3.g7	Additional	Information	n							Appendix C
4.0	Wood Heat	ter Descrij	otion							

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

	Wood Heater Information Processing System Application Form	
4.1	Attach two photographs	Page 12
4.2	Pursuant to Section 60.537c designate the permanent storage location of the tested wood	Page 16
	heater, and the measures taken to seal the unit against tampering	rage 10
4.3	Describe any special operation instruction that were provided to the laboratory.	N/A
4.4	Attached engineering drawings showing dimensions and material specifications for the	Appendix D
	following wood heater components and systems	
4.4a1	Firebox dimensions	Page 11
4.4a2	Air Introduction System: Cross sectional area of inlets, outlets, and location and method	Page 10
	of control	
4.4a3	Baffles: dimension and location	Appendix D
4.4a4	Refractory, insulation, dimension, location, and materials	Appendix D
4.4a5	Catalyst: Dimensions and location	N/A
4.4a6	Catalyst bypass mechanism and catalyst bypass gap tolerances: dimensions, cross sectional area and location	N/A
4.4a7	Flue Gas Exit: : Location and Exit	Page 10
4.4a8	Door and catalyst bypass gaskets: dimensions, fit and materials	Appendix D
4.4a9	Outer shielding and coverings: dimensions and location.	Appendix D
4.4a10	Fuel feed system (if applicable): fuel feed rate, auger motor design and power rating, and	
7.7410	the angle of the auger to firebox	N/A
4.4a11	Forced air combustion system (if applicable): location and horsepower of blower motors	
	and fan blade size	N/A
4.5	For each of the components or system listed above, identify any dimensions that you	
	expect to have tolerances greater than ± -25 " (or $\pm -5\%$ for cross sectional areas) when	
	all components are assembled and provide your manufacturing tolerances for these items.	N/A
	Attach documentation demonstrating that such tolerance variations do not adversely	
	affect emissions.	
4.6	If the tested wood heater has a firebox composed of material different from the material to	
	be used in the manufacturer wood heaters (as provided for in Section 60.533(b)(3)(ii),	N/A
	describe these differences in the space below.	
5.0	Catalyst Information	N/A
5.1	Catalyst Brand and model: Applied ceramics : Ceramic material	
5.2	Attach Catalyst Warranty: Within manual	N/A
5.3	Can the catalyst be visually inspected during normal heater operation or under typical	N/A
	installation conditions? Describe what the owner must do to make observation.	
5.4	Describe catalyst installation and removal procedures (include descriptions, and	N/A
	illustrations prepared for use in owners manuals, if available.)	B. (**
5.5	Describe location, size, and design of ports for monitoring catalyst temperature. Identify	N/A
	commercially available monitoring devices which are compatible.	B. (**
5.6	If you want EPA to consider a proposed substitute for the catalyst identified in Section	N/A
	5.1, please indicate below and submit evidence the you meet the tests described above.	
6.0	Affirmations	

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

	Wood Heater Information Processing System Application Form	
6.1	A representative wood heater for the model line in question has been tested in accordance with 40 CFR part 60, Section 60.534(a), and meets the applicable emission limits in 40 CFR Part 60, Section 60.532.	Yes
6.2	The results of all valid certification test runs are reported in this application and in the attached materials.	Yes
6.3	Wood Heaters manufactured under this certificate will be similar in all material and dimensional respects, within tolerances of 40 CFR Part 60, Section 60.533(k)(2) and (3), to that wood heater tested for certification purposes.	Yes
6.4	In-house parameter inspections and emission tests will be conducted and records will be maintained as described in 40 CFR Part 60, Section 60.533(o).	Yes
6.5	Labeling requirements described in 50 CFR Part 60, Section 60.536	Yes
6.6	For catalyst equipped wood heaters, warranty, inspection access and temperature port requirements as described in 40 CFR Part 60, Section 60.533 (c), (d), and (m) will be adhered to.	N/A
6.7	I have read, understand and will comply with the requirements for reporting and record keeping set forth in 40 CFR Part 60, Section 60.537.	Yes
6.8	I have entered into a contract that satisfies the requirements of 40 CFR Part 60, Section 60.533(g) with the laboratory which conducted this certification	Yes
	The information contained in this application is true, complete, and correct to the best of my knowledge	Yes
		·

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Technician Notes:

Prior to start of testing, the dilution tunnel was cleaned with a 6" steel brush.

Per Method 28 Section 8.1.1.3.1 - The unit could not be operated below 0.80 kg/hr, therefore, two category 2 tests were performed. See Table 1.

Wood Heater Identification:

• Appliance Tested: Stoll Fireplace –High Valley model 1300

Serial Number: PROTOTYPE 1 1300
Manufacturer: Stoll Fireplace, Inc.

• Catalyst: No

• Heat exchange blower: Integral

Type: Wood StoveStyle: Free Standing

• Date Received: Wednesday, July 04, 2012

• Wood Heater Aging: *Thursday, July 05, 2012 – 10 hrs*

• Testing Period – Start: Monday, November 26, 2012 Finish: Monday, December 03, 2012

Test Location: Dirigo Laboratories, Inc. 11785 SE HWY 212 Suite 305 Clackamas, OR 97015

• Elevation: 30 Feet above sea level

Test Technician(s): Ben Nelke

January 28, 2013

Results: Emissions

The overall weighted average emission rate based on the 4 certification runs is **3.1g/hr**. (See Table 1 & Figure 1)

	Results							
_	• '		Category 2 Category 3			Category 4		
0.8 to 1.0	Kg/hr	.80 to 1.2	<u> </u>	1.25 to 1.	0.	Maximum	Burn Rate	
		(1.76 to 2.	76 IDS/TIF)	(2.76 to 4.	19 IDS/TIF)			
Date	9/26/2012	Date	9/26/2012	Date	9/27/2012	Date	9/27/2012	
Run Number	1	Run Number	2	Run Number	3	Run Number	4	
Emission Rate	3.65	Emission	3.98	Emission	2.57	Emission	2.41	
−g/Hr	3.03	Rate g/Hr.	3.56	Rate g/Hr.	2.57	Rate g/Hr.	2.71	
Burn Rate	0.92	Burn Rate	1.0	Burn Rate	1.4	Burn Rate	2.38	
KG/hr	0.52	KG/hr	1.0	KG/hr	1.4	KG/hr	2.36	
Overall		Overall		Overall		Overall		
Efficiency CSA	72.2%	Efficiency	68.5%	Efficiency	71%	Efficiency	64.5%	
B415		CSA B415		CSA B415		CSA B415		
BTU (HHV)	12,548	BTU (HHV)	12,833	BTU (HHV)	18,722	BTU (HHV)	28,846	

Table 1

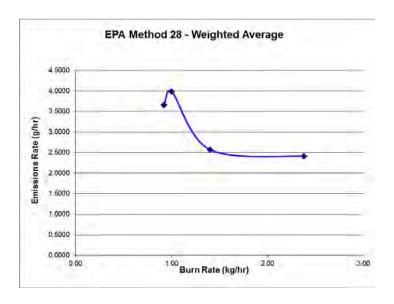


Table 2

January 28, 2013

Results: Efficiency

Overall Weighted Average Efficiency using the Higher Heating Value is 69.5%.

Figure 1: Overall Weighted Average Efficiency (HHV)

January 28, 2013

Test Condition Summary:

All testing conditions for runs 1 through 5 fell within allowable specifications of Method - 28. A summary of facility conditions, surface temperature averages, temperature averages, pre-test fuel weights, test fuel charge weights and run times is listed below in Table 2.

Runs	Ambient (Deg. F)			Relative Humidity (%)		Stove	Barometric Pressure	Pre-Test Fuel End Wt.	Test Fuel Charge	Test Fuel Moisture (Dry	Run Time
	Pre	Post	Pre	Post	Start	End	(In. Hg.)	(Lbs.)	Wt. (Lbs.)	Basis)	(Min.)
Run 1	75	72	67	67	285	211	29.88	2.0	9.4	20.3	230
Run 2	69	74	65	65	342	230	30.0	1.8	8.9	21.5	200
Run 3	81	78	65	65	367	300	30.0	2.1	8.7	20.5	140
Run 4	76	74	65	65	411	399	30.0	2.1	8.6	23	80

Table 3: Test Condition Summary

Description:

Dimensions, firebox configuration, air supply locations, air introduction locations, and baffle locations of the wood heater are referenced below in Table 4 and Figures 2 through 5.

	Heater Dimensions					
Height	Width	Depth	Firebox Volume	Weight		
30"	22"	23"	1.34 ft ³	314 Lbs.		

Table 4: Heater Dimensions

Figure 2: Front

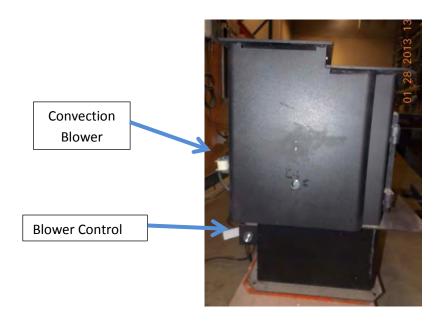


Figure 3: Side

January 28, 2013

Figure 4: Firebox

Process Operations:

The appliance was operated according to procedures as described in the Operations Manual – (see appendix I). Primary air supply settings, fuel bed adjustments, test fuel properties, test fuel configuration and loading density are as described below in Tables 4, and Figure 9. All draft measurements for all 5 runs were less than 1 ft³ per minute. See Appendix F for detailed run information.

Table 5

	Burn Category	Primary Air Setting	Fuel Bed Adjustments				
		Inches	Pre-Burn	Test Run			
Run 1	2	0.34"	Added 2.4 lbs @ 1hr	Door Open 1 minute, primary air open 3 min 10 Seconds. Fan On at 30 minutes.			
Run 2	2	0.375"	None	Fan On at 30 minutes			
Run 3	3	0.75"	None	Fan On at 30 minutes			
Run 4	4	2.0"	None	Fan On at run start			

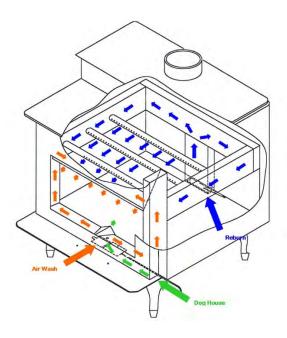
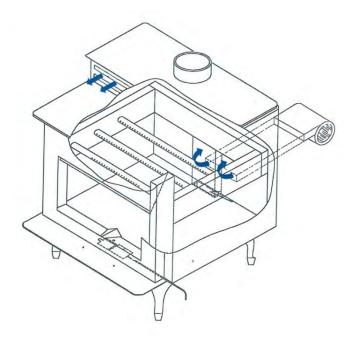



Figure 5: Air Flow Schematic

Figure 6: Convection Air Schematic

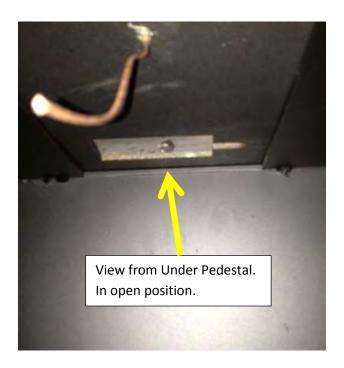


Figure 7: Primary Air

Figure 8: Primary Air Slide

January 28, 2013

Test Fuel Properties:

All test fuel charges consisted of 6 pieces of $2" \times 4" \times 13.5"$ douglas fir dimensional lumber and were assembled per Method 28 specifications. Figures 6 and 7 detail the fuel charges. All fuel crib moisture content and temperatures were within allowable limits.

Figure 9: Fuel Load -Side View

Figure 10: Fuel Load: Top/ front view

Figure 11: Fuel loaded

Figure 12: Door Shut

January 28, 2013

Sampling Locations:

Sample ports are located 16.5 feet downstream from any disturbances and 1.5 feet upstream from any disturbances. Flow rate traverse data was collected 12 feet downstream from any disturbances and 5.5 feet upstream from any disturbances. (See Figure 8 & 9)

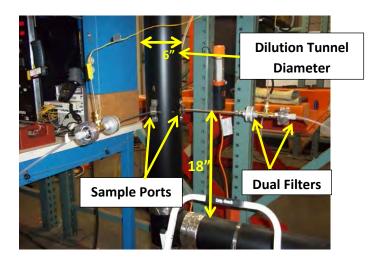
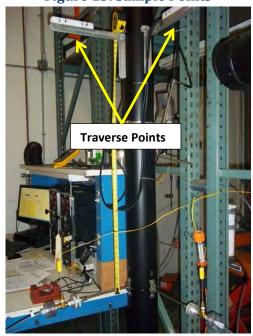



Figure 13: Sample Points

Figure 14: Traverse Points

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Sampling Methods:

A dual filter dry sampling train system (5G sample option 3) was used in collecting particulate samples. The dilution tunnel is 6 inches in diameter. All sampling conditions per method 5G option 3 were followed. No alternate procedures were used.

Sampling and Analytical Procedures:

All sampling and analytical procedures used followed EPA Methods 1, 2, 3, 4, 5 and 28.

Analytical Methods Description:

All sample recovery and analysis procedures followed EPA Method 5 procedures. At the end of each test run, filters were removed from their housings, dessicated for 24 hours, and then weighed to a constant weight per Method 5 section 11.0.

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Quality Control and Assurance Procedures and Results:

Calibration procedures and results were conducted per EPA Method 1 through 5 and Method 28. Calibration certificates and results can be found in Appendix F.

Test method quality control procedures (leak checks, volume meter checks, stratification checks, proportionality results) followed the procedures outlined in Method 5.

Upon completion of testing, the unit was sealed with metal strapping and labeled with the following seal:

ATTENTION: THIS SEAL IS NOT TO BE BROKEN WITHOUT PRIOR AUTHORIZATION FROM THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. THIS APPLIANCE HAS BEEN SEALED IN ACCORDANCE WITH REQUIREMENTS OF 40 CFR PART 60 SUBPART AAA §60.535(g) REPORT #_______ DATE SEALED______ MANUFACTURER_____ MODEL#_____

Figure 15: Sealed unit

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Appendices:

Appendix A: Sampling and Analytical Procedures

All Sampling and Analytical Procedures were performed by Ben Nelke. All procedures used were directly from EPA Methods 1, 2, 3, 4, 5 and 28. No alternative procedures were used for this test series.

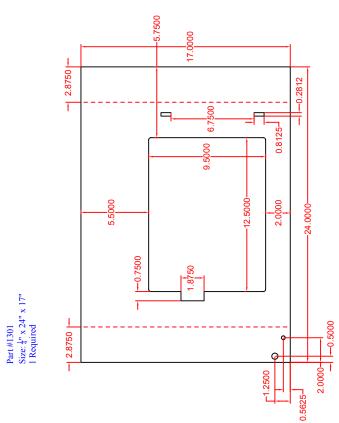
Appendix B: Participants

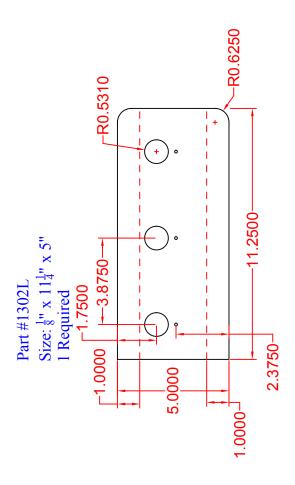
The following personnel were involved with the testing and producing of this report.

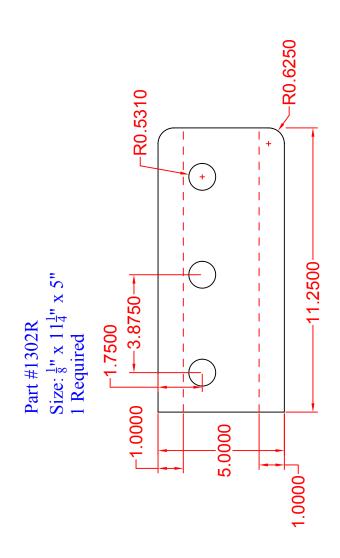
- John Steinert, President
- Gary Nelke CMfgE, Vice President
- Ben Nelke, Senior Technician

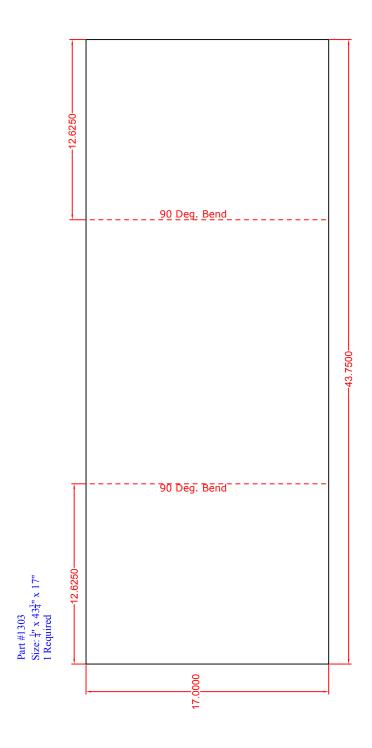
Appendix C: Updates

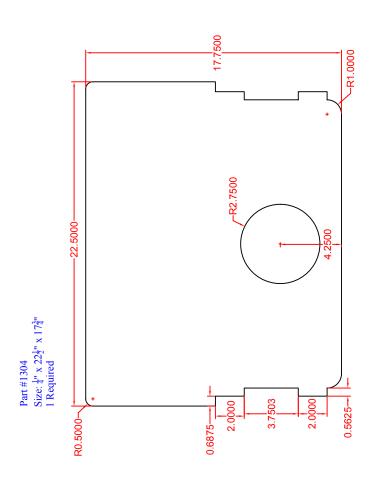
• There were no changes made to the High Valley 1300 once testing commenced.

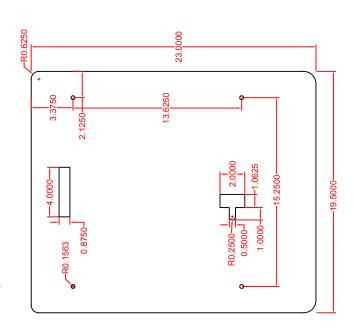

Model - High Valley 1300 Distributed by: Stoll Fireplace

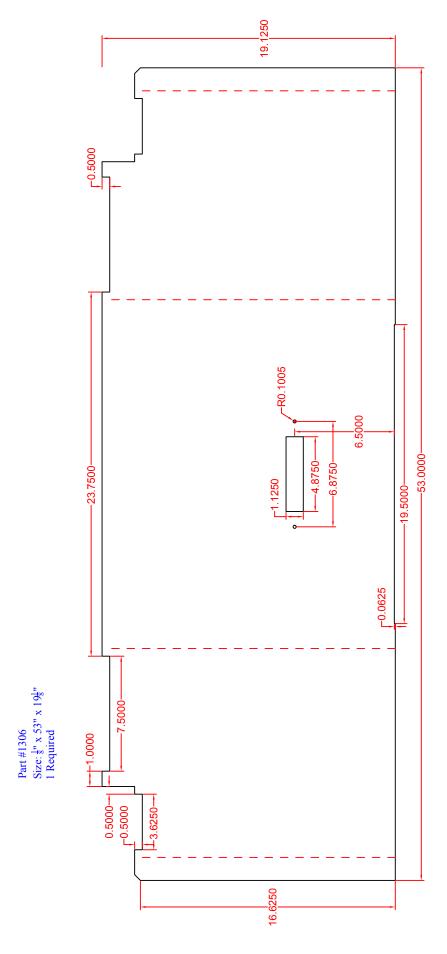

EPA Certification Testing Project # 014-S-001-1

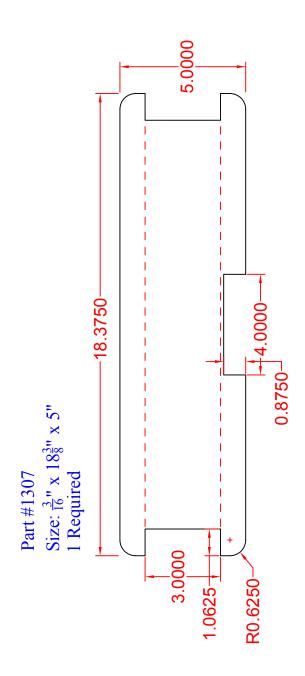

Prepared by Dirigo Laboratories, Inc.

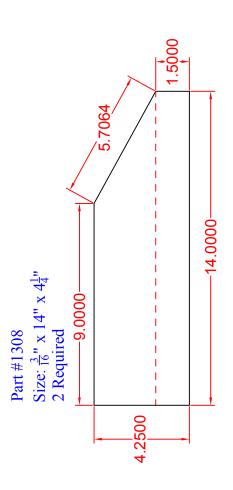

January 28, 2013

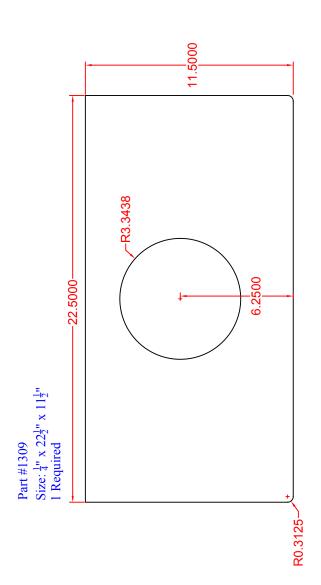

Appendix D: Drawings



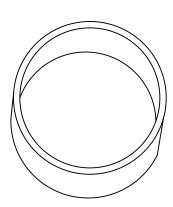


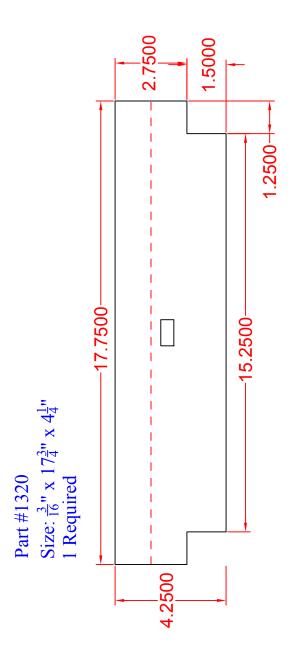


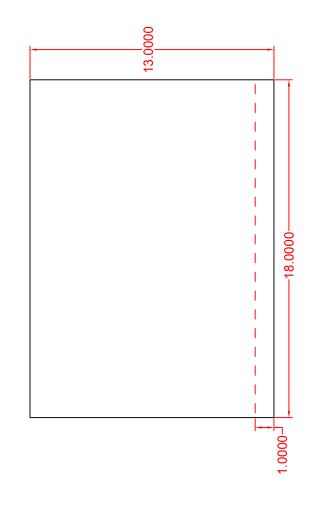




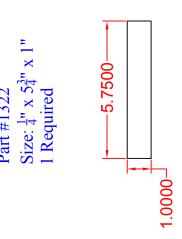
Part #1305 Size: ³/₁₆ x 19¹/₂ x 23" 1 Required

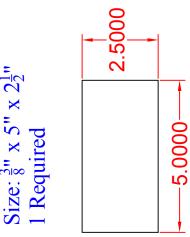


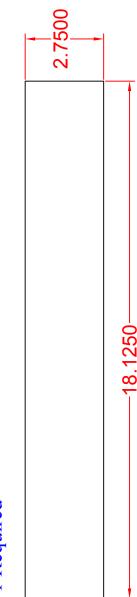


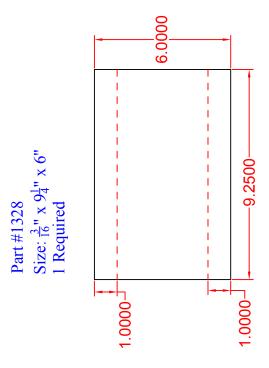


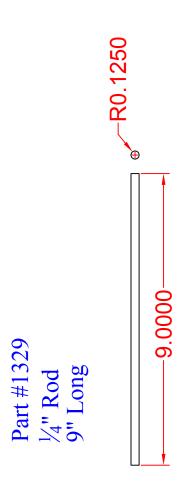
Part #1310 Size: ½" x 6" Dia. x 4" 1 Required

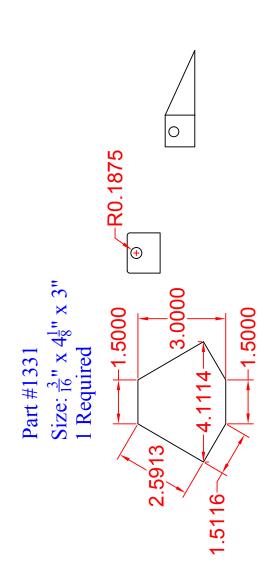


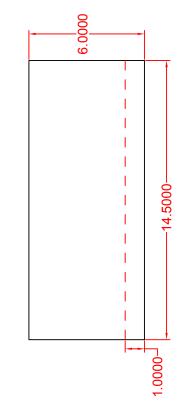


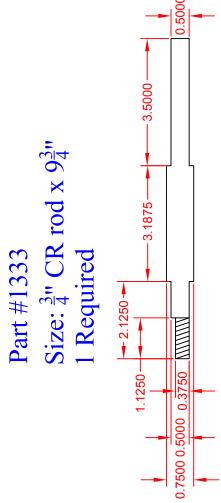


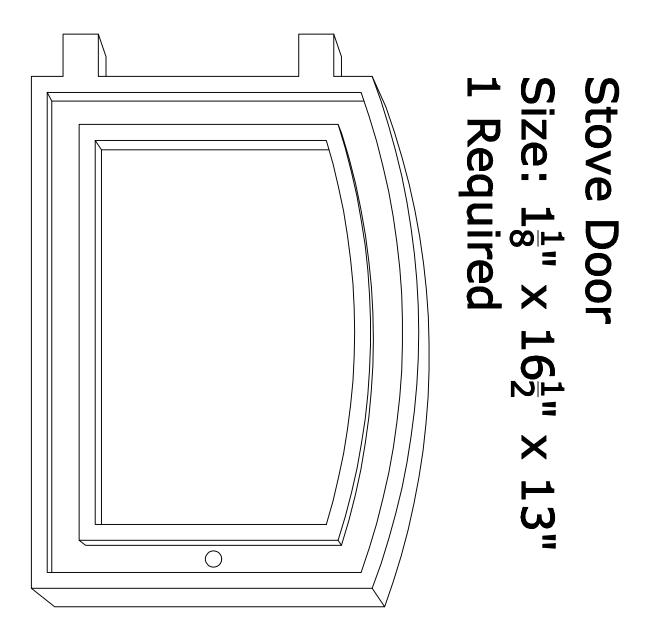



CBI


Part #1326 Size: $\frac{3}{16}$ " x $18\frac{1}{8}$ " x $2\frac{3}{4}$ " 1 Required




Part #1330 Size: $\frac{1}{8}$ " x 17 $\frac{3}{4}$ " x $\frac{3}{4}$ " x $\frac{3}{4}$ " 1 Required


Part #1332 Size: 3 x 14½" x 6" 1 Required

CBI

1.0000 Front & Middle Tube 1.0000 Rear Tube 1.0000 --3.7500--R0.1250 PR0.1250 0.5000 0.5000

Part #1334 Size: 1" x 17" Tubing

Stoll Trailers, Inc.

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Appendix E: 10 Hour Break-in

CBI

PREBURN

JOB # 014_S_1_1 TECHNICIAIBTN

DATE:

RUN#:

READING INTERVAL:

Run Time:

120

		1	2	3	4	2	
				TEMPER	TEMPERATURES		
SCALE	FLUE	LEFT	RIGHT	BACK	TOP	BOTTOM	STO
READING	DRAFT	SIDE	SIDE				AVG
5.4	-0.062	298	307	324	009	482	4

			29.	28.	4.	-0.4	0.3	0.
			Dilution Tunnel MW(dry):	Dilution Tunnel MW(wet):	Dilution Tunnel H2O:	Dilution Tunnel Static:	Tunnel Area:	Pitot Tube Cp:
STOVE	AVG T	402.2	418	460.6	431.6	409.2	386.8	367.8

500 521

571

340

318

-0.071

4.5

10 20

FI 0

515

536

449

376

-0.062

2.5

30

999

368 282

401

347

-0.071

2.1

511

441

263

449

382

-0.051

2.1

40

516

367

248

426

377

-0.044

2

20

501

362

221

395

360

-0.049

4.4

09

483

414

211

377

345

-0.055

3.6

1b/1b-mole

111.000

1111

1111

1111

1111

110

112

112

110

Temperature

0.038

0.035

0.043

0.042

0.034

0.034

0.040

0.043

0.032

dP

Pt.8

Pt.7

Pt.6

Pt.5

Pt.4

Pt.3

Pt.2

Pt.1

Tunnel Traverse Information

Stoll_HighValley

Model Designation

56 lb/lb-mole

100 In H20

 $\mathfrak{f}\mathfrak{t}^2$

Average Tunnel Flow: Intial Tunnel Flow: Tunnel Velocity:

352.6 359.6

466

457

351 407

350.4

465

381

202

373 373

331 328

-0.048

3.2

80

-0.051

2.6

464

395

203

215 218

370 372

340

-0.048 -0.048

2.1 1.8

100 110

347

349

338.8

444

317

219

369

345

-0.037

1.6

120

Notes:

140.4526 scfm 143.6207 scfm

13.22088 ft/sec.

		STOVE	AVG T														
5		BOTTOM															
4	ATURES	TOP															
3	TEMPER/	BACK TOP															254.9231
2		RIGHT	SIDE														
1		LEFT	SIDE														345.6923
		FLUE	DRAFT														
		SCALE	READING														
CBI	l		ET														

CB

Dirigo Laboratories, Inc.

		AMBIENT	TEMP											
9		METER	TEMP											
2		FB	INT											
4	TURES	FB REAR	TEMP											1
ĸ	TEMPERATURES	FILTER	TEMP											
2		FLUE	TEMP											
1		TUNNEL	TEMP											
		Weight	Chg											
		Scale	Weight											
		Proportional	Rate (%)											
		TUNNEL VEL	FT/SEC											
		FILTER	VAC											
		ORIFICE	DELTA H											
		TUNNEL	DELTA P											
		SAMPLE	RATE(FT3/MIN)											
_ TIME:		GAS METER	VOLUME R.											
TEST START TIME:			ET											

Page 51 of 145

Stoll Trailers, Inc.

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Appendix F: Run Information

Run 1:

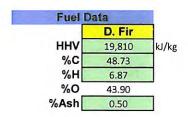
VERSION: 2.4 4/15/2010

lanufacturer: Stoll

Model: High Valle

Model: High Valley
Date: 1/28/2013
Run: 1

Control #: 10 est Duration: 230 urn Category 2


Wood Moisture (% DRY): 20.3
Wood Moisture (% wet): 16.87
Load Weight (lb wet): 9.40

Burn Rate (dry kg/h): 0.92
Total Particulate Emissions: 13.99

Appliance Type: Non-Cat (Cat, Non-Cat, Pellet)

Temp. Units F (F or C)

Weight Units Ib (kg or lb)

	Averages	253.3 Tem	70.6 p. (F)	14.09	5.51	1.10
Elapsed	Fuel Weight	Flue	Room	Flue G	as Compositi	ion (%)
Time (min)	Remaining (lb)	Gas	Temp	O2	CO2	CO
0	9.4	248.0	75.0	15.20	5.46	0.53
10	8.3	334.0	73.0	13.78	6.79	0.50
20	7.4	328.0	73.0	13.50	6.69	0.48
30	6.2	409.0	73.0	9.36	11.23	0.08
40	4.9	451.0	72.0	6.80	13.64	0.09
50	3.6	452.0	72.0	6.61	13.79	0.04
60	2.7	389.0	72.0	9.74	10.46	0.04
70	2.1	342.0	72.0	11.10	9.02	0.21
80	1.7	306.0	71.0	12.33	7.54	0.42
90	1.5	268.0	71.0	13.75	5.63	1.01
100	1.3	242.0	71.0	14.10	5.20	1.22
110	1.1	227.0	70.0	14.28	4.94	1.40
120	1.0	217.0	70.0	14.49	4.64	1.60
130	0.8	216.0	70.0	14.23	5.01	1.49
140	0.7	204.0	69.0	15.35	3.54	1.74
150	0.6	190.0	70.0	16.08	2.66	2.06
160	0.5	180.0	69.0	16.25	2.80	1.76
170	0.4	173.0	68.0	16.42	2.67	1.68
180	0.3	167.0	68.0	16.41	2.80	1.65
190	0.2	162.0	68.0	16.76	2.41	1.72
200	0.2	154.0	67.0	17.58	1.57	1.84
210	0.1	147.0	69.0	17.86	1.42	1.76
220	0.1	140.0	70.0	18.08	1.17	1.54
230	0.0	134.0	72.0	18.18	1.10	1.54

Page 53 of 145

1)		
1	4		
	1	1	
	_	1	
-	B	7	,

		Moisture of Wood (wet basis):	Initial Dry Weight Wido (kg)	Moisture Content Dry				Btu/lb		0.17	kg Wood per	100 mole dfp	0.15	0.18	0.18	0.28	0.34	0,34	0.26	0.23	0,20	0.17	910	0.16	0.16	0.13	0.12	0.12	0.11	0,11	0.11	60'0	80'0	0.07	0,07	
		oisture of W	nitial Dry We	Moist			AHI	18328.69		0.14		2	50.0	90.0	50.0	0.00	0.00	00'0	-0.01	0.01	0.04	0.12	210	0.21	0.19	0.23	0.27	0.23	0.22	0.21	0.22	0.24	0.23	0.19	0.19	
		Σ	~			-	4.26 HHV	0		5.43		le gas)	10'5	6.11	10.9	15.6	11 61	11.70	8.89	7.79	6.69	5.47	5.16	5.04	5.27	4.20	3.68	3.59	3.43	3.52	3.24	2.61	2 43	2 0 2	2.01	
						Section 5	Load Weight (kg).			1 66	Mass Balance	moles/100 mole dry flue gas)	1.49	1.81	1.78	2 78	3.38	3.40	2.58	2.28	1.97	1.67	1.02	1.59	1.65	1.36	1.23	1 18	1.12	1.15	1.07	06.0	0.84	0.72	0.70	
			(Btu)	(ptd)			W bead	Value in k		20.94	Ma	(moles/100	21 01	21.03	21.03	21.16	21.20	21.21	21.15	21.10	21.05	20.95	20.00	20.87	20.89	20.83	20.78	20.82	20.82	20.83	20.82	20.79	20.79	20.81	18'02	
			66,612	48,091						78.95		191	79.19	79.29	79.29	77.67	26.62	79.95	79.73	79.56	79.38	78.99	78 78	78.67	78.74	78.54	78.34	78.48	78.51	78.53	78.47	78.37	78.39	78.47	78.46	
		93.8%	70,232	72.2%	96 611					16.87	MW	Moisture Fuel Rurnt	16.87	16.87	16.87	16.87	16.87	16.87	16.87	16.87	16.87	16.87	16.97	16.87	16.87	16.87	16.87	16.87	16.87	16.87	16.87	16.87	16.87	16.87	16.87	
		2			lotal co (g)					19810.00		Calorific M	٦,		00:01861	00.01861	00.01861	00'0186	00.01861	00.0186		0001861	000000	0001861	00:01861	00:01861	00.01861	00.01861	00:01861	00.01861	00'01861	00'0186	00'0186	00.0186	19810.00	
		Combustion Efficiency	Total (nput (ki)	Eff	POT					2.74 19		Oxygen C	٦.			-	Ü					2.74 19				2.74 19	2.74 19	2 74 15		2 74 19	-	2.74 19			2.74 19	
		Con								6.87		Hydrogen C	1	6.87	6.87	6.87	6.87	6.87	6.87	6.87	6.87	6.87	6.87	6.87	6.87	6.87	6.87	6.87	5.87	6.87	6.87	6.87	6.87	6.87	6.87	
										4.06	Fuel Properties	Carbon Hy	1	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4,06	20.4	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	
										90902	Fuel	Total C	1	11581	7845	9339	9713	8219	5604	3736	2241	1494	1131	1121	1121	747	747	747	747	747	374	374	374	747	374	
		SHC.	1.37							75.58	% Dry	Comsumed	000	11.70	21.28	34.04	47.87	61.70	71.28	77.66	81.91	84.04	88 30	89.36	91 49	92.55	93.62	94.68	95 74	96.81	97.87	27.87	98.94	98.94	100.001	
	29.46	536 11	15.28							0.02	Dry Wt.	Now Co	3.55	3.13	2.79	2.34	1.85	1.36	1.02	62.0	0 64	0.57	0.41	0.38	0.30	0.26	0.23	0 19	0.15	0.11	80.0	80.0	0.04	0.04	000	000
	<u>.</u>									75.58	3. Wet	Consumed	000	11.70	21.28	34.04	47.87	61.70	71.28	77.66	81.91	84.04	88 30	89.36	91.49	92.55	93.62	94.68	95.74	18'96	97.87	78.76	98 94	98.34	100.001	
	Dry Molecular Weight (Md)	Dry Males Exhaust Gas (Nr)	Air Fuel Ratio (A/F)						0	1.04	Wet Wt 3	Now Co	1									0.68				0.32	0.27	0.23		0.14		60.0			000	
1	Dry Moleci	Dry Males	Air Fue	13,227 KJ/h			60		123.1 Deg. C	20.9	-	Fuel				į		8.6				17.4				212	23.4	244		25.1		32.0			41.2	
	72.2%	93.8%	%6 92	Bru/h 1					Deg. F	61.5%	-	£×		71.4%	71.7%	27.6%	78.0%	78.3%	77.8%	77.0%	74.8%	67.4%	54 D%	61.7%	64 1%	55.8%	48.2%	52.3%	52 4%	54.2%	20.8%	41.3%	40.8%	39.6%	39.3%	
			iency:	12,548 Bru		3,83333333 h	2.0 lb/h		in	9	100	ansfer %								78.2%		76.6%										70.6%			%9'02	
	Overall Heating Efficiency:	Combustion Efficiency	Heat Transfer Effic						np 253.)	757	ust Heart	Transf																			7					
	Overa	ç	Hea	Heat Output	near input	Burn Duration	Burn Rate		Stack Temp	80.8%	Combust	E ×	100						,,,			87.9%												í	25.8%	
					e CO2	4	Q			0 21.5	Input Data	Room (C)	7		4 22.8							1 217				6 20.6		2 20,6				8 19.4			7 22.2	
					5	~	1.060			123.0		Flue	1									37 1311				18 95.6		96 82.2							7.95 06	
						CO2-uf				50 14,45	alculation	Total Calc. % O2 O2 [e]			20.47 13.54							20.50 14.37			20 51 14.76	20.59 16.18		20.64 16.96				20.71 18.22	Ü		20.77 18.90	
										264.8% 20.50	Oxygen Calculation	Sicess Total		169.5% 20	12							195.8% 20			202.2% 20	272.0% 20		330.8% 20							644 1% 20	
				LHV	93.8%	83 1%	KL/h	to	kl/h	5.51 264		% Exc	-									5,63 195			5.01 20.2	3.54 273								ð	1.10 64	
			· ·	H	+	+	0.92	Н	18,321 k	H		X 00	1									101		1 60 4		1.74 3								1.54		
- 10	ley d3			+	Ħ	1		H		H	ATA		4																							
Stoll	1/28/2013		10		Combett	HTEH	Burn Rate	Grams CO	MCwet	Averages	INPUT DATA	Weight Remaining (ke)	4.26	3.77	3.36	2.81	2.22	1.63	1,23	0 95	077	0.68	0.50	0.45	0.36	0.32	0.27	0.23	0.18	0.14	0.09	60'0	0.05	0.05	0.00	
Manufacturer	Model	Run	Control #.	none paragraph								Elapsed	0	10	20	30	40	20	9	20	90	96 5	110	120	130	140	150	160	170	180	190	200	210	220	230	D
Σ		(В							i i																									

In Not

	19:02		Grams Produced	HC	0000	2.67	1.73	10.07	0.07	-0.0B	-0.17	0.17	0.38	06'0	1.16	1.02	1.20	1.07	1.02	1.35	1.18	117	1.13	0.63	0.81	0.82	1.65
	313.96		Grams	8	000	45.50	30.09	3.81	3.67	1.37	1,23	4.90	6.79	12.87	16.00	13.88	16.04	1439	13.62	17.78	15.84	15.85	15.25	8.52	10.87	11.13	27.85
	4320		Chem	105\$2	0	809	400	34	41	o	m	59	90	180	226	197	229	205	194	255	226	225	217	121	155	158	273
sums	51079		Total	Output	0	8269	5622	7245	7573	6435	4362	7877	1678	1001	980	717	569	718	417	360	391	392	405	190	154	152	200
	15207,25		Sensible and	Latent Loss	000	2703.73	1823 12	12,6502	2099.17	1774.62	1238.69	799.83	474.20	307.22	287.88	206.85	200.37	197.44	135.98	132.22	130.72	130.05	125 74	62.82	64.42	63.00	430C4
	4320 1	H	-	_	ō		400	34	41	6	m	59	90	180	226			205	194	255	226	225	217	121	155	158	202
	19527	LÌ			0	1312	2223	2094	2140	1784	1241	658	564	488	514	404	429	402	330	387	356	355	342	184	219	221	454
AVERAGE	7618.90 1	Ш	12			5665.43 3	3614.24 2	2 06:04	1364.74 2	299.96	1388.86 1	1553.22	1982,80	5464.01	5811.73	139,95	584.29	. 00 1117	8755.46	0257.33	3449.48	9424,96	3081.02	9754.30	1618.62	1727.10	1054 47
NA	12860.18 76		-	W		553.04 56	55172 56	569.72 44	579.33 43	579.55 42	565.48 43	555.03 45	547.28 49	538.89 64	533.17 68	530,09 71	527.90 75	527.68 71	525.27 87	521.99 107	520.02 94	518.70 94	517.39 90	516.30 97	514.77 110	512.81 11	1000
			+	\dashv																							
	5 36678.97	(Fuel)		H20 Comb	1599.34	1664.95	1562 19	1744,96	1772,49	1775.33	1734 84	1693.54	1655.05	1578.04	1541.59	1516.67		1504.90	1450.79	1391,26	1411.64	1409.18	1412.63	1389.23	1331.84	1322 58	*****
SUMS	36011.86	Energy Losses (kJ/kg of Dry Fuel)	Flue Gas Constituent		Ĭ,	255.46	244.05	Į,	7.76	11.07	-34 50	49.79	186.53	17.699	855.42	1007.36	1181 14	1053.56	1506.01	1992.06	1743.55	1732.67	1664.21	1862 96	2383.16	2423.81	24.004
S	32342.04	sesson Al.	Flue Gas	NZ	1478.53	1847.84	1835.55	1560.67	1455.80	1450 49	1584 47	1524.20	1525 50	1501.95	1337.27	1235 29	1167.09	1117.77	1251.83	1223,38	1181.09	1171 37	1081.65	1099.14	1211.19	1163.05	
	62623.09	Ene		8	1022.78	798.40	779.27	83.30	77.35	34,15	44.84	266,48	614.45	1743 98	2164.24	2502 14	2889.50	2592.41	3676.90	4797.64	4271.15	4273.68	4109.71	4588.26	5852.82	5992.95	*** ***
	82.8665			07	287.48	325.56	326.18	182.08	120 72	117.74	202.31	223.52	253.21	283 92	259.00	242.30	232.36	217 44	267.66	274.41	264.71	265.24	243 08	252.62	291.95	283.38	
	3338.78			700	140.15	220.16	215.29	308.92	351,30	353 77	291 40	240.65	200,77	147.51	121.04	106 10	94.14	97.25	77.01	56.59	57.31	54.12	52,35	45.78	32.87	28.52	****
	294.61	Room	Temp	×	297.04	295.93	295.93	295.93	295.37	295.37	295.37	295.37	294.82	294.82	294.82	294.26	294.26	294.26	293.71	294.26	293.71	293.15	293.15	293 15	292.59	293.71	2000
	3543.58			H20	3347.17	5069.06	4951 18	6547.85	7399.49	7419.35	617173	5245.52	4557.90	3814.29	3306.97	3034.01	2839.47	2820.03	2606.02	2315.09	2140.38	2023.95	1907.77	1811.00	1675.45	1501.79	****
	3920 80	Temperature		CHA	3632 64	5669.93	5526.36	7517.00	8613.28	8639.29	7034.40	5881.78	5044.18	4163.83	3575.87	3261.40	3040,96	3019,02	2776.39	2454 42	2259 79	2130.38	2003.51	1898.26	1750.13	1565.71	****
	2929.17	nt to Stack	stituent	ZN	2764 69	4191.99	4094.16	5420.69	6129.28	6145.81	5107.79	4338.35	3767.65	3151.25	2731.09	2505.09	2344.13	2328.04	2150.96	1910 47	1766.02	1669.75	1573 77	1493.84	1381.85	1238.52	****
	2961.66	nge - Amble	Flue Gas Constituent	9	2796.31	4237.65	4138.91	5477.15	6191.52	6208.19	5161.67	4385.41	3809.42	3186,96	2762.50	2534 16	2371.48	2355.22	2176.26	1933.10	1787.06	1689.74	1592.67	1511.83	1398.57	1253.55	AND A PROPE
	3047.30 2961.66 2929.17	Heat Content Change - Ambient to Stack	-1	0.5	2872 55	4364.19	4261.74	5653.27	6398.33	6415 74	5324 34	4517 30	3919.65	3275.44	2836.97	2601.22	2433.49	2416.73	2232.21	1982.02	1831.68	1731 50	1631.73	1548.67	1432.25	1283.55	44.74.33
	4057.93	Heat	100	202	360086	5832.54	5691.61	7621.33	8666.22	8690.79	716057	6042.12	5219.97	4342 39	3749.38	3431.17	3206.05	3183.59	2935.87	2602.68	2402.02	2268.42	2136 14	2026.15	1871.76	1676.38	1000
	39611	Stack	Temp	×	393 15	440.93	437.59	482 59	505.93	506.48	471.48	445.37	425.37	404.26	389.82	381.48	375.93	375.37	368,71	360.93	355,37	351.48	348.15	345.37	340.93	337.04	333.45
	11.28	100000	Moisture	Present	11 28	11,28	11.28	11.28	11.28	11.28	11.78	11.28	11.28	11.28	11.28	11.28	11.28	11.28	11.28	11.28	11.28	11.28	11.28	11.28	11.28	11.28	14 20
-	32,09			979	33.80	33,95	33.98	34.54	34.51	34 55	34.60	34.41	34.11	33,02	32.61	32.27	31.88	32,16	31 15	30.06	30.62	30.64	30 79	30,35	29 18	59.08	20.00
	573.05		- 1	NZ NZ	534.79	440.80	448.33	287.91	237.52	236,01	310.21	351.33	404.90	476.62	489.65	493 11	497.88	480.13	581.99	640.35	668.79	701.52	687.30	735.78	876.50	939.06	110371
	121		of Dry Woo	=	036	0.29	0.27	100	10.0	10'0	0.04	90.0	0.21	0.75	96.0	1.13	1.32	1,18	1.69	2.23	1.95	1.94	187	2,09	2.67	2.72	273
	09.6		Moles per kg of Dry Wood	3	320	2.78	2.73	0.29	0.27	0.12	0.16	0.93	2.14	60.9	757	8.76	10.13	60.6	12.89	16 84	15.00	15.01	14.44	16.13	20 58	21.08	27.74
	11494			70	100 08	74.60	76.54	32.21	18.87	18,35	38.00	49.48	64.60	86.68	91.30	93 15	95.43	89.97	119.91	138.45	144.52	153.18	148.97	163.12	203.84	220 78	264.40
	30.00		400	703	36.87	37.75	37.83	40.53	40,54	40.71	40.70	39.83	38.46	33.97	32.28	30,92	29.36	30.55	26.23	21.74	23.86	23.86	24.51	22.60	17.56	17.01	45 44

Mobure Content MCwb 16.87

07/18 355

CA 8873

HV 6.87

OX 48.90

CBI

Dirigo Laboratories, Inc.

Manufacturer:

Stoll

Model:

High Valley

Date:

1/28/2013

Run:

1

Control #:

10

Test Duration:

230

Output Category:

2

	HHV Basis	LHV Basis
Overall Efficiency	72.2%	78.0%
Combustion Efficiency	93.8%	93.8%
Heat Transfer Efficiency	76.9%	83.1%

HHV Output Rate (kJ/h)	13,227	12,548	(Btu/h)
Burn Rate (kg/h)	0.92	2.04	(lb/h)
Input (kJ/h)	18,321	17,380	(Btu/h)

Test Load Weight (dry kg)	3.5	7.8	dry lb
MC wet (%)	16.87		
MC dry (%)	20.30		
Particulate (g)	13.99		
CO (g)	314		
Test Duration (h)	3.833333333		

Emissions	Particulate	co
g/MJ Output	0.28	6.19
g/kg Dry Fuel	3.95	88.56
g/h	3.65	81.90
lb/MM Btu Output	0.64	14.39

Air/Fuel Ratio (A/F)	15.28
----------------------	-------

Test Results in Accordance with CSA B415.1-10

Technician: Mull

Default Fuel Values

	D. Fir	Oak
HHV (kJ/kg)	19,810	19,887
%C	48.73	50
%H	6.87	6.6
% O	43.9	42.9
%Ash	0.5	0.5

A MM

& Me

		Г		0.039	70.000						1 lb/lb-mole	$\overline{}$	% (딘	16 ft²	6			13.17174 ft/sec.	148.5201 scfm	1 scfm							
			Pt.8	0.038	70						29.00	28.56	4.00	-0.400	0.19	66.0			13.1717	148.520	147.9501 scfm							
			Pt.7	0.042	70						MW(drv):	MW(wet):	inel H20:	nel Static:	Tunnel Area:	Pitot Tube Cp:												
			Pt.6	0.041	70						Dilution Tunnel MW(drv):	Dilution Tunnel MW(wet):	Dilution Tunnel H2O:	Dilution Tunnel Static:	TuT	Pitot			city:	I Flow:	inel Flow:							
		e Information	Pt.5	0.036	70						Diluti	Dilut	1	D					Funnel Velocity:	Intial Tunnel Flow:	Average Tunnel Flow:							
		Tunnel Traverse Information	Pt.4	0.040	70																		Notes:					
	HIGH VALLEY		Pt.3	0.036	70				STOVE	AVG T	291	298.8	301.2	304.2	307.4	311.8	306	294.4	282.6	289.2	290							
			Pt.2	0.040	2,0		2		BOTTOM	250	305	296	280	273	297	323	325	313	302	296	297							
	Model Designation		Pt.1	0.042	70		4	TURES	TOP	412	398	454	470	460	413	383	331	324	319	351	335							
PREBURN				dЬ	Temperature		m	TEMPERATURES	BACK	165	179	176	179	186	195	198	201	187	178	182	189							
Φ.							2		RIGHT	SIDE 255	298	296	299	314	331	344	354	343	323	324	330							
							1		LEFT	SIDE	275	272	278	288	301	311	319	305	291	293	299							
			10			110			FLUE	-0.08	-0.063	-0.058	-0.06	-0.06	-0.054	-0.052	-0.052	-0.037	-0.053	-0.052	-0.044							
	014-S-1-1	9_26_12	FERVAL:						SCALE	KEADING 5.4	4.7	4	3.3	2.7	2.2	1.7	3.6	3.3	2.9	2.4	2							
СВ	ICI/	DATE: 9.	READING INTERVAL:			Run Time:			1	G 0	10	20	30	40	20	09	70	80	06	100	110							

My Me

				*			- 18	7								+		
		STOVE	AVGT															
S		воттом																
4	TURES	TOP																
3	TEMPERA	BACK TOP																184.5833
2		RIGHT	SIDE															
1		LEFT	SIDE															290.1667
-		FLUE	DRAFT															
		SCALE	READING															
			ET															
(•	B	۲															Ш

Run #

Date:

9/26/12

29.00 lb/lb-mole 28.56 [lb/lb-mole Dilution Tunnel MW(wet): Dilution Tunnel MW(dry):

4.00 % Dilution Tunnel H20:

-0.400 In H20

Dilution Tunnel Static:

0.196 Tunnel Area:

Pitot Tube Cp:

0.039

0.038 Pt.8 0.042 Pt.7 Pt.6 0.041 Dilution Tunnel Traverse Data Pt.5 0.036 0/ 0.040 Pt.4 0/ 0.036 0.040 Pt.2 0.042 Pt.1 Temperature

Tunnel Velocity:

13.172 ft/sec. 148.52 scfm Intial Tunnel Flow:

147.95 scfm Average Tunnel Flow

Matter VacCore 15th Matter VacCore 15th Matter VacCore 15th Matter VacCore 15th Matter VacCore Matter Vac	TECHNICIA	BIN						ROOM TEMP (F)	P (F)	68.0			BEG	MID	END	AVG
MAIL A MITTER Y-ACCORNE 1544 MAIL MAIL	9_26_12								BAROMETRIC				29.88	29.88	29,88	29.88
Column C	NTERVAL:	10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	901						0000	TEDIAL		8			
Autocolor Color	ER #:	1481		To low	P.O.L	REAR FILTER #	REAR FIL	ER #:	1482	TROBE INF	ENIME.		cc			
Table Tabl	RATE (CFM):	<0.01	@	10	N-HG		FINAL LEAK R.	ATE (CFM)	<0.01	8	10	9H-NI				
Particular Par	7 00	230		AMBIENT FIL	TER #:			VOLUME		LITERS	FUEL MOIST	TURE DB		20.3	%	
House Hous				FINAL LEAK RA	E (CFM):			(0)		IN-HG						
Yakiffer Transfer	T TIME:									1	2	3	4	SI.	9	
AMERITANIMI DELIAR DATE OF TABLE ARE NATIONAL MORNER TO MARKET AND AREA (115) Character and Area (115) CHARACTER (115)	GAS METE		TUNNEL	ORIFICE	FILTER	TUNNEL VEL	Proportional	Scale	Weight	TUNNEL	FLUE	FILTER	FB REAR	88	METER	AMBIENT
0.000 0.003 0.004 <th< td=""><td>VOLUME</td><td></td><td></td><td>DELTA H</td><td>VAC</td><td>FT/SEC</td><td>Rate (%)</td><td>Weight</td><td>Chg</td><td>TEMP</td><td>TEMP</td><td>TEMP</td><td>TEMP</td><td>TNI</td><td>TEMP</td><td>TEMP</td></th<>	VOLUME			DELTA H	VAC	FT/SEC	Rate (%)	Weight	Chg	TEMP	TEMP	TEMP	TEMP	TNI	TEMP	TEMP
0.139 0.039 1.95 -1.18 13.103 010.2 3.3 11 7.2 3.34 78 27.7 60.956 8.3 0.0139 0.039 1.95 -1.07 13.090 10.0 5.2 1.2 7.1 409 7.8 2.79 60.939 8.3 0.143 0.039 1.95 -1.05 13.1303 100 3.5 1.2 425 7.9 425 7.9 5.0 60.93 9.0 0.141 0.039 1.95 -1.95 -1.35 13.103 10.1 2.7 425 7.9 429 9.0 9.0 0.142 0.039 1.95 -1.95 -1.35 13.00 1.7 0.0 3.2 7 425 7 425 7 9.0 9.0 9.0 0.142 0.039 1.95 -1.95 13.103 10.1 1.7 426 7 2.0 60.93 9.0 0.142 0.039 1.95<	0.000	0.000	0.039	90.0	-0.11		NA	9.4	0	73	248	74	192	89.6209	83	75
0.139 0.039 1139 0.023 1130 0.01 0.04 0.03 113 0.023 1130 0.01 0.03 1130 0.023 1130 0.01 2.2 1130 0.01 2.2 1130 0.01 2.2 1130 0.01 2.2 1130 0.01 2.2 1130 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1.389	0.139	0.039	1.95	-1.18	13.103	102	8.3	1.1	72	334	78	227	6029.65	83	73
0.134 0.039 1.94 -1.87 13.00 101 6.2 1.2 4.0 7.8 2.9 60.03-13 8.7 0.134 0.039 1.96 -0.13 13.100 0.01 3.6 1.3 4.0 7.2 4.0 7.0 60.0 9.0 0.0 0.1 0.1 2.0 1.3 0.0<	2.778	0.139	0.039	1.93	-0.52	13.090	101	7.4	6.0	71	328	78	238	6029.42	85	73
0.141 0.089 1.96 -0.044 0.014 4.9 1.0 4.5 6.0 4.0 4.0 9.0 4.0 4.0 9.0 4.0 1.0 6.0 4.0 1.0 4.0 1.1 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 6.0 2.0 2.0 2.0 2.0 6.0 2.0 2.0 2.0 6.0 2.0 2.0 2.0 6.0 2.0 2.0 2.0 2.0 6.0 2.0 2.0 2.0 2.0 2.0 6.0 2.0 <	4.170	0.139	0.039	1.94	-1.87	13.090	101	6.2	1,2	71	409	78	249	6029.19	87	73
0.141 0.039 1.95 1.150 1.131 0.01 3.6 1.9 7.2 452 7.9 20.2 6029.11 93 0.144 0.039 1.97 -0.24 1.3103 001 2.7 0.99 7.7 2.89 7.9 2.02 6028.17 96 0.142 0.039 1.97 -0.94 1.30.00 0.01 2.7 0.06 7.7 2.26 6028.47 96 0.142 0.039 1.97 -0.94 1.30.06 0.01 1.7 0.6 7.7 2.86 6028.43 98 0.142 0.039 1.98 0.6 1.1 0.6 1.7 2.86 7.7 2.8 6028.43 98 0.142 0.039 1.97 -0.76 1.3066 100 1.1 0.2 69 2.7 7.5 2.30 6027.83 100 0.142 0.039 1.9 1.0 1.1 0.2 69 2.7 7.2	5.575	0.141	0.039	1.96	-0.13	13.103	101	4.9	1.3	72	451	79	196	6029.19	06	72
0.141 0.039 197 -0.24 11.103 101 2.7 0.99 72 389 79 21.7 60.903 95 0.142 0.0439 1.97 -0.244 13.078 10.01 2.1 0.6 71 3.6 77 2.29 60.937 96 0.142 0.039 1.97 -0.54 13.078 100 1.5 0.6 77 2.8 76 2.8 96 272 60.83 96 97 97 97 97	6.981	0.141	0.039	1.95	-1.69	13.103	101	3.6	1,3	72	452	79	202	6029.11	93	72
0.142 0.039 1.56 -1.15 1.36 1.01 1.1 342 78 226 0.028.77 96 0.142 0.039 1.55 -0.54 13.078 101 1.7 0.04 70 366 77 229 6028.43 98 0.142 0.039 1.55 -0.54 13.066 100 1.3 0.2 66 77 230 6028.03 99 0.142 0.039 1.56 -1.4 13.066 100 1.3 0.2 69 242 75 230 6028.03 99 0.142 0.039 1.59 -0.8 13.066 100 1.3 0.2 69 242 75 230 6028.03 100 0.142 0.039 1.59 -0.8 13.066 100 0.2 66 217 75 129 602.83 100 0.143 0.039 1.59 -0 13.063 100 0.2 66	8.389	0.141	0.039	1.97	-0.24	13.103	101	2.7	6.0	72	389	79	217	6029.03	95	72
0.142 0.039 1.97 0.94 13.078 101 1.7 0.4 70 306 77 229 6028.43 98 0.142 0.039 1.95 -0.59 13.078 101 1.5 0.0 268 75 230 6028.81 99 0.142 0.039 1.96 -1.4 13.066 100 1.1 0.2 69 227 75 230 6028.83 100 0.142 0.039 1.99 -0.76 13.066 100 1.1 0.2 69 227 75 230 6028.83 100 0.142 0.039 1.99 -0.7 13.066 100 1.1 0.2 69 227 75 230 6028.03 99 0.142 0.039 1.99 -0.7 13.066 100 0.7 69 227 75 230 6028.03 99 0.142 0.039 1.99 -0.7 0.0 68	9.804	0.142	0.039	1.96	-1.95	13.090	101	2.1	90	71	342	78	226	6028.77	96	72
0.142 0.039 1.95 -0.95 1.070 1.95 7.0 268 76 231 60.083 99 0.142 0.039 1.96 -1.4 13.066 100 1.3 0.2 69 242 75 230 6072.03 199 0.142 0.039 1.97 -0.76 13.066 100 1.1 0.1 69 217 74 228 6072.03 100 0.142 0.039 1.97 -0.76 13.066 100 1.1 0.1 68 216 74 228 607.07 100 0.142 0.039 1.97 -0.6 13.053 100 0.6 0.1 68 216 73 228 607.207 101 0.143 0.039 1.97 -0.6 13.053 100 0.6 0.1 68 180 72 180 605.8 101 0.143 0.039 1.98 -0.7 13.020 0.0	11.220	0.142	0.039	1.97	-0.94	13.078	101	1.7	0.4	0/	306	77	229	6028.43	98	71
0.142 0.039 1.96 -1.4 13.066 100 1.3 6.9 242 75 230 602782 99 0.142 0.039 1.38 0.1 1.1 0.2 69 247 75 75 602782 190 0.142 0.039 1.38 0.04 13.066 101 1.1 0.2 227 75 230 602782 100 0.142 0.039 1.39 0.0 13.053 100 0.7 0.1 226 216 74 228 602763 101 0.142 0.039 1.37 0.0 0.1 0.0 0.7 0.1 68 216 73 227 60268 101 0.143 0.039 1.38 0.0 13.041 100 0.4 0.1 68 100 72 184 602763 101 0.143 0.039 1.38 0.0 0.3 0.1 66 152 173 <td>12.640</td> <td>0.142</td> <td>0.039</td> <td>1.95</td> <td>-0.59</td> <td>13.078</td> <td>101</td> <td>1.5</td> <td>0.2</td> <td>02</td> <td>268</td> <td>76</td> <td>231</td> <td>6028.31</td> <td>66</td> <td>71</td>	12.640	0.142	0.039	1.95	-0.59	13.078	101	1.5	0.2	02	268	76	231	6028.31	66	71
0.142 0.039 1.88 0 13.066 101 1.1 0.2 69 227 75 230 602782 100 0.142 0.039 1.97 -0.76 13.066 100 1 0.1 69 217 74 228 6027.07 101 0.142 0.039 1.97 -0.83 13.053 100 0.7 0.1 68 216 74 224 6027.07 101 0.142 0.039 1.97 0 13.053 100 0.5 0.1 68 204 73 207 6026.38 101 0.142 0.039 1.97 0.65 1.30.05 0.1 66 180 72 194 6026.38 101 0.142 0.039 1.98 -0.47 13.029 100 0.2 0.1 66 167 71 176 602.58 101 0.143 0.039 1.98 -0.47 13.029 101	14.058	0.142	0.039	1.96	-1.4	13.066	100	1.3	0.2	69	242	75	230	6028.08	66	71
0.142 0.039 197 -0.76 13.066 100 1 0.1 69 217 74 228 602743 100 0.142 0.039 1.99 -0.83 13.0653 100 0.8 216 74 224 602.07 101 0.142 0.039 1.97 0 13.053 100 0.7 0.1 68 1204 73 207 602.84 101 0.142 0.039 1.97 0.65 13.053 100 0.5 0.1 68 130 73 107 602.84 101 0.143 0.039 1.97 0.65 13.053 100 0.5 0.1 68 180 72 184 602.61 101 0.143 0.039 1.98 -0.67 13.041 100 0.2 0.1 66 187 71 175 602.89 101 0.143 0.039 1.98 -0.25 13.025 101	15.482	0.142	0.039	1.98	0	13.066	101	1.1	0.2	69	227	75	230	6027.82	100	70
0.142 0.039 1.99 0.83 13.053 100 0.8 0.2 68 216 74 224 602707 101 0.142 0.039 1.2 0 13.053 100 0.7 0.1 68 204 73 207 602.83 101 0.143 0.039 1.97 0.05 13.053 100 0.5 0.1 68 180 72 182 602.63 101 0.143 0.039 1.98 -0.65 13.053 100 0.4 0.1 66 180 72 18 602.63 101 0.143 0.039 1.98 -0.17 13.029 100 0.3 0.1 66 167 71 176 6025.18 101 0.143 0.039 1.98 -0.17 13.029 100 0.2 0.1 66 167 71 176 6024.88 100 0.144 0.039 1.98 -0.18	16.902	0.142	0.039	1.97	-0.76	13.066	100	Ţ	0.1	69	217	74	228	6027.43	100	70
0.142 0.039 2 0 13.053 100 0.7 6.8 204 73 207 6026.84 101 0.142 0.039 1.37 0 13.053 100 0.6 0.1 68 190 73 192 6056.88 101 0.143 0.039 1.37 0.65 1.0 0.1 68 180 72 184 6026.88 101 0.143 0.039 1.38 0.67 13.041 100 0.4 72 189 6026.88 101 0.142 0.039 1.38 0.67 13.041 0.4 0.1 66 167 71 176 6025.88 101 0.142 0.039 1.98 -0.75 13.029 100 0.2 0.1 66 167 71 176 6024.88 100 0.143 0.039 1.98 -0.5 13.029 101 0.1 71 179 179 6024.88	18.326	0.142	0.039	1.99	-0.83	13,053	100	8.0	0.2	89	216	74	224	6027.07	101	70
0.142 0.039 1.97 0 13.053 100 0.6 0.1 68 190 73 192 6026.38 101 0.143 0.039 1.97 -0.65 13.053 100 0.5 0.1 68 180 72 184 6026.01 101 0.142 0.039 1.98 -0.67 13.029 100 0.2 0.1 66 167 71 176 6025.18 101 0.143 0.039 1.98 -0.17 13.029 100 0.2 0.1 66 154 71 176 6025.38 101 0.143 0.039 1.98 -0.25 13.029 101 0.1 0.1 170 164 6024.38 100 0.142 0.039 1.98 0 13.049 0.1 0.1 0.1 0.0 140 72 164 6024.38 100 0.142 0.039 1.98 0 13.090 0.1	19.748	0.142	0.039	2	0	13.053	100	0.7	0.1	89	204	73	207	6026.84	101	69
0.143 0.039 1.97 -0.65 13.053 100 0.5 0.1 68 180 72 184 6026.01 101 0.142 0.039 1.98 -0.67 13.041 100 0.4 0.1 67 173 72 179 6026.18 101 0.143 0.039 1.98 -0.17 13.029 100 0.3 0.1 66 167 71 176 6026.15 101 0.142 0.039 1.99 -1.03 13.029 100 0.2 0.1 66 167 71 176 6024.88 100 0.143 0.039 1.99 -1.93 13.029 101 0.1 66 147 70 164 6024.38 100 0.142 0.039 1.99 -1.8 13.049 101 0.1 0.1 140 72 160 6024.38 100 0.142 0.039 1.99 0.1 0.1 0.1 </td <td>21.172</td> <td>0.142</td> <td>0.039</td> <td>1.97</td> <td>0</td> <td>13.053</td> <td>100</td> <td>9.0</td> <td>0.1</td> <td>89</td> <td>190</td> <td>73</td> <td>192</td> <td>6026.38</td> <td>101</td> <td>70</td>	21.172	0.142	0.039	1.97	0	13.053	100	9.0	0.1	89	190	73	192	6026.38	101	70
0.142 0.039 1.38 -0.67 13.041 100 0.4 0.1 67 173 72 179 6025.58 101 0.143 0.039 1.98 -0.17 13.029 100 0.3 0.1 66 167 71 176 6025.15 101 0 0.142 0.039 1.99 -0.15 13.029 100 0.2 0 66 162 71 172 6024.38 100 0 0.143 0.039 1.98 -0.25 13.029 101 0.1 66 154 71 169 6024.38 100 0.143 0.039 1.98 -1.93 13.078 101 0.1 0 140 72 160 6024.38 100 0.1442 0.039 1.98 0 13.090 101 0 0 140 72 160 6024.48 100 0.145 0.039 1.98 0 13.09 <	22.597	0.143	0.039	1.97	-0.65	13.053	100	0.5	0.1	89	180	72	184	6026.01	101	69
0.143 0.039 1.98 -0.17 13.029 100 0.3 0.1 66 167 71 176 6024.88 101 0.142 0.039 1.99 -1.03 13.029 100 0.2 0.1 66 162 71 172 6024.88 100 0.143 0.039 1.98 -0.25 13.029 101 0.2 0 66 154 71 169 6024.38 100 0.142 0.039 1.98 -1.93 13.053 100 0.1 0.1 68 147 70 164 6024.38 100 0.143 0.039 1.98 0 13.078 0 0 0 1	24.021	0.142	0.039	1.98	-0.67	13.041	100	0.4	0.1	29	173	72	179	6025.58	101	68
0.142 0.039 1.99 -1.03 13.029 100 0.2 0.1 66 162 71 172 6024.88 100 0.143 0.039 1.98 -0.25 13.029 101 0.2 0 66 154 71 169 6024.39 100 0.142 0.039 1.98 -1.93 13.053 100 0.1 0 70 140 72 169 6024.38 100 0.142 0.039 1.98 0 13.096 101 0 0 70 140 72 160 6024.28 100 0.142 0.039 1.98 0 13.009 101 0 0 71 134 73 154 6026.12 100 1	25.447	0.143	0.039	1.98	-0.17	13.029	100	0.3	0.1	99	167	71	176	6025.15	101	89
0.143 0.039 1.38 -0.25 13.029 101 0.2 0 66 154 71 169 6024.39 100 0.142 0.039 1.38 -1.93 13.053 100 0.1 0.1 0 70 149 72 169 6024.38 100 0.143 0.039 1.39 -1.8 13.076 101 0.1 0 70 140 72 160 6024.28 100 0.142 0.039 1.39 0 13.00 0 0 70 140 72 160 6026.12 100 0.142 0.039 1.39 0 13.00 0 0 71 134 73 154 6026.12 100 0.142 0.039 1.39 0 13.00 0 13.4 73 154 6026.12 100 0.143 1.39 1.39 1.39 1.34 73 154 100 100 <	26.869	0.142	0.039	1.99	-1.03	13.029	100	0.2	0.1	99	162	71	172	6024.88	100	68
0.142 0.039 1.98 -1.93 13.053 100 0.1 0.1 68 147 70 164 6024.28 100 0.143 0.039 1.99 -1.8 13.078 101 0.1 0.1 0 70 140 72 160 6025.44 100 0.142 0.039 1.98 0 13.090 101 0.1 0 1 134 73 154 6026.12 100 0.142 0.039 1.98 0 13.090 101 0 0 1 134 73 154 6026.12 100 0.142 0.039 1.98 0 1	28.297	0.143	0.039	1.98	-0.25	13,029	101	0.2	0	99	154	7.1	169	6024.39	100	29
0.143 0.039 1.39 -1.8 13.078 101 0.1 0 70 140 72 160 6025.44 100 0.142 0.039 1.98 0 13.090 101 0 0 0 71 134 73 154 6026.12 100 0.142 0.039 1.98 0 13.090 101 0 0 1 134 73 154 6026.12 100 0.143 1.98 1 1 1 134 73 154 6026.12 100 1.08 1 1 1 1 1 1 1 1 1.08 1 1 1 1 1 1 1 1 1 1.09 1 1 1 1 1 1 1 1 1 1 1.09 1 1 1 1 1 1 1 1 1	29.718	0.142	0.039	1.98	-1.93	13.053	100	0.1	0.1	89	147	70	164	6024.28	100	69
0.142 0.039 1.98 0 13.090 101 0 01 71 134 73 154 6026.12 100 101 102 103 103 104 104 104 105 100 102 103 104 <td>31.146</td> <td>0.143</td> <td>0.039</td> <td>1.99</td> <td>-1.8</td> <td>13.078</td> <td>101</td> <td>0.1</td> <td>0</td> <td>70</td> <td>140</td> <td>72</td> <td>160</td> <td>6025.44</td> <td>100</td> <td>70</td>	31.146	0.143	0.039	1.99	-1.8	13.078	101	0.1	0	70	140	72	160	6025.44	100	70
	32.566	0.142	0.039	1.98	0	13.090	101	0	1.0	71	134	73	154	6026.12	100	72

James &

IEST START LIME:	A LIME.									1	2	E	4	5	9		
	GAS METER	SAMPLE	TUNNE	ORIFICE	FIITER	THUNE! VE	Proportional	Scale	Maight	THINING	2112	TEMPER	TEMPERATURES	91	MACTED	THADICAL	
٦	VOLUME	≥ ≥		DELTA H	VAC		Rate (%)	Weight	Chg	TEMP	TEMP	TEMP	TEMP	N IN	TEMP	TEMP	
3																	
	32.566		0.039	1.97		13.070	100.6			69	253				96	7.1	-

A NOR

										I	T	T						T					_												
					STOVE	AVGT	319	317	340	353	375	370	362	352	341	331	323	305	291	278	797	258	249	240	230	211									
			i	9	845750	METER	8	83	86	89	25 8	8	26	86	66	86	100	81 81	100	100	100	100	100	100	66	100									
		IN-HG		2	FB	BOT	297	301	299	538	305	313	318	321	324	325	324	324	321	313	304	297	289	279	268	245									
	SS	10		3 4	FB	REAR	467	473	582	999	77 17	288	483	419	364	331	310	301	264	247	233	224	215	203	193	174									
	TERIAL:	0		3	CIITED	73	2	62	79	8 8	8 8	2 2	78	π	11	76	к 1	74	73	73	2	17	77	ĸ	8 4	2 22									
	PROBE MATERIAL:	1484 <0.01		2	RIGHT	SIDE	311	293	292	319	345	398	409	412	406	397	385	355	337	318	301	285	569	258	245	228									
		#: ATE (CFM):		1	LEFT	SIDE	295	280	77.7	286	333	359	372	379	379	374	370	355	341	329	318	310	302	291	279	253									
	0.17	FINAL LEAK RATE			FILTER	VAC	-1.38	-1.47	.1.6	-1.61	1917	1.56	1.34	-1.57	-1.32	-1.68	-124	-1.04	-1.34	-1.26	-1.48	-1.17	-1.13	-1.52	96.0-	.1.62									
	0.982	IN-HG	74.2		ORIFICE	DELTAH	2	1.98	1.97	2.03	202	2.01	2.01	2.01	202	2.02	2.02	2.02	2.02	2.02	2.05	2.03	2.04	2.02	2.04	2.04									
	CTOR:	10	Firebox Delta T		FLUE	DRAFT	-0.06	-0.06	-0.08	80.0-	-0.07	-0.06	-0.06	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.03	-0.03	-0.03	-0.03	-0.03	-0.02									
	METER Y FACTOR:	@			PROPORTIONAL	RATE	102	101	100	101	101	101	101	101	100	101	100	100	101	100	100	100	100	100	101	101									
014-5-1-1 BTN 10	1402	<0.01	230			RATE(FT3/MIN)	0.136	0.136	0.135	0.138	0.138	0.139	0.139	0.139	0.139	0.139	0.139	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.140	0.139									
9_26_12 1 NTERVAL:	: X:	ATE (CFM):			GAS METER	VOLUME	1.361	2.716	4.070	5.445	8.207	9.592	10.981	12.372	13.765	15.159	16.551	19.339	20.738	22.134	23.529	24.924	26.322	27.721	30.516	31.910									
108.2 TECHNICIA DUE RUMH: 1	SAMPLE BOX :	FINAL LEAK RATE (CFM):	Run Time:			<u>Б</u>	10	20	30	3 %	09	70	80	06	100	110	120	140	150	160	170	180	190	200	220	230				Pa	ge	63	of 1	145	

the sell

	STOVE	AVGT								74	
2	AACTED	MEICH								95	?
	FB	BOT								300	-
RES	FB	REAR								368	200
TEMPERATURES	921.112	LICIEN								77	
	RIGHT	SIDE								328	
	LEFT	SIDE								327	-
	FILTER	VAC								-1 336667	1000001
	ORIFICE	реста н								-0.044 2.02087 -1.336667	
	FLUE	DRAFT								-0.044	
	PROPORTIONAL	RATE								100.624	
	SAMPLE	RATE(FT3/MIN)								0.139	-
	GAS METER	VOLUME R								31.91	

Now My

			feet/second	dscf/hour	dscf	-	-	<u> </u>	in-h20	lmim.		0.00026 grams/dscf	2.29 grams/hour 3.62 grams/hour		
	SAMPLE B INFORMATION	31.91	13.17	8877.00	29.89	202	0.039	95	2.02	230	7.7	0.0002	3.6	grams/hour	99.0
			feet/second	dscf/hour	dsct			ш	in-h20	mim.	m g	0.00026 grams/dscf	2.34 grams/hour 3.69 grams/hour	3.65	
	SAMPLE A INFORMATION	32.57	13.17	8877.00	31.45	2 02	0.039	96	1.97	230	8.3	0.00026	2.34		101.0
		Total Sample Volume - Vm	Average Gas Velocity in Dilution Tunnel - vs	Average Gas Flow Rate in Dilution Tunnel - Qsd	l otal Sample Volume (Standard Conditions) - Vmstd	Average Tinnel Temperature	Average Delta p	Average Gas Meter Temperature	Average Delta H	Total Time of Test	Total Particulates	Particulate Concentration (dry-standard)	Particulate Emission Rate Adjusted Emissions	AVERAGE ADJUSTED EMISSIONS	% OF AVERAGE
014-5-1-1 RUN # 1 DATE: 9_26_12		0.92 KG/HR DRY	5		8.3 mg		7.7 mg								
JOB NUMBER		BURN RATE		1	PARTICULATE	EII TER R	PARTICULATE								

Stoll Trailers, Inc.

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Run 2:

VERSION: 2.4 4/15/2010

lanufacturer: Stoll

Model: High Valley
Date: 1/28/2013
Run: 2

Control #: 10 est Duration: 200 urn Category 2

Wood Moisture (% DRY): 21.5
Wood Moisture (% wet): 17.70
Load Weight (lb wet): 8.90

Burn Rate (dry kg/h): 1.00
Total Particulate Emissions: 13.26

Fuel Data

D. Fir

HHV 19,810 kJ/kg

%C 48.73

%H 6.87

%O 43.90

%Ash 0.50

DouglaOak

	Averages	265.9	71.8	14.57	5.00	1.06
			p. (F)			
Elapsed	Fuel Weight	Flue	Room	Flue G	Sas Composit	ion (%)
Time (min)	Remaining (lb)	Gas	Temp	02	CO2	CO
0	8.9	269.0	69.0	19.94	0.73	0.23
10	7.5	385.0	68.0	13.62	6.57	0.65
20	6.4	356.0	68.0	13.43	6.92	0.78
30	5.3	373.0	69.0	13.27	6.98	0.66
40	3.9	472.0	69.0	6.40	14.10	0.18
50	2.8	431.0	71.0	8.41	11.78	0.02
60	2.1	373.0	71.0	10.62	9.66	0.07
70	1.6	335.0	71.0	11.98	8.01	0.26
80	1.3	293.0	72.0	13.47	6.06	0.86
90	1.2	266.0	72.0	13.62	5.76	1.03
100	1.0	247.0	72.0	14.34	4.66	1.56
110	0.9	227.0	73.0	15.34	3.50	1.67
120	0.7	213.0	73.0	15.62	3.16	1.77
130	0.6	202.0	73.0	15.85	2.99	1.74
140	0.5	194.0	73.0	16.15	2.85	1.54
150	0.5	184.0	73.0	16.71	2.26	1.67
160	0.4	171.0	74.0	17.57	1.47	1.59
170	0.3	159.0	74.0	18.06	1.08	1.57
180	0.3	148.0	74.0	18.03	1.06	1.87
190	0.2	142.0	74.0	17.14	2.32	1.21
200	0.0	143.0	74.0	16.34	3.15	1.27

Page 6 01/45 NW

CBI

to sel

			Moisture of Wood (wet basis):	initial Dry Weight Wido (kg).	Moisture Content Dry							T. F.	Btu/lb		0.15	ke Wood per	100 mole dtp	Nk	20:0	81.0	0.19	61.0	0.35	0.29	0.24	0.20	71.0	0.17	0.16	0.13	0.13	0.12	0.11	0.10	90.0	0.07	90.0	60.0	0.11	
			W joint nice of W	W AD INTH	Moist						44007	212	18328.69		0.13			×	0.00	0.07	60'0	90.0	0.02	-0.01	-0.01	0.02	0.10	0.13	0.20	0.22	0.23	0.23	0.20	0.22	0.20	0.20	0.24	0,15	0,16	
			N	-12						200	THE PARTY				4.98		(sel an	5	0.81	6.02	6 41	6.38	12.06	66 6	8.24	6.97	5.73	2.60	5.03	4.12	3.90	3.74	3.49	3.08	2.36	2.01	2,20	2.82	356	
										Cond Weight (Let)	The state of the s	Heating	Value in kJ/kg - CV 19810.00		1.57	Mass Balance	moles/100 mole dry flue gas)	[w]	0.24	1.80	1.92	1.30	3.52	2.90	2.39	2.04	1.73	1.70	1.58	1.33	1.27	172	1.13	1.02	0.80	0.70	0.78	16.0	1.13	
			100	(Btn)	(Bto)					W Pear	-	FUE	Value in		20.94		(moles/100	1	20.96	21.01	21 00	21.02	21.20	21.17	21.13	21.08	20.98	20.95	20.87	20.84	20.82	20.82	20.84	20.82	20.81	20.81	20.77	70.87	20,88	
			No. of Sec.	62,446	42,768										78.93			[4]	79.01	79.21	79.18	79.23	79.91	79.83	79.67	79.48	60'62	78.99	78.69	78 57	78.50	78.50	78.58	78.48	78.47	78.45	78.32	78,69	78.72	
			92.0%	65,840	45,093	95.89	381.49								17.70	Mhw	Moisture	Fuel Burnt	17.70	17.70	17.70	17.70	07.74	17.70	17.70	17.70	17.70	17.70	17.70	17.70	17.70	17.70	17.70	17 70	17.70	17.70	17.70	17.70	17.70	
					,		Total CD (g). 3								19810.00	L	Calorific M	Value Fue	00.01861	00.01861	00'01861	19810.00	00.01861	00.01861		19810.00	00'01861			19310,00	00.01861	00'01861	00.01861	00.01861	00'01861	19810.00	00'01861	00.01861	9810,00	
			Combustion Efficiency:	Total Input (kJ)	Total Output (kl)	#3	Total								274 19	1	Oxygen Ca	_		2.74 19	23	2.74 19	2,74 19	2,74 19	9	2.74 19	-	2	8	2,74 19	2.74 19	2.74 19	2,74 19	2,74 19	2.74 19	2.74 19	2,74 19	9	2,74 19	
			Com												6.87	╁	Hydrogen 0	_	6.87	6.87	6.87	5.87		6.87		6.87	6.87			6,87	6.87	6.87	6.87	6.87	6.87	6.87	6,87	6.87	6.87	
															4.06	ě	Carbon Hy	/12=[a] /	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	4.06	
															6/599	Fuel	Total	/ Judul	0	14426	8137	9247	9247	8599	4439	5959	1480	1110	1110	1110	1110	240	370	370	740	370	370	1849	740	
			SHC	1.32											75.17	t	Comsumed	٨	000	15.73	28.09	40.45	56.18	25.89	76 40	82.02	85.39	86.52	88.76	89.89	92,13	93.26	94.30	94,38	95.51	96.63	86,63	97,75	100.00	
		29.40	575.84	16.42											0.02	1	-	With	3.32	2.80	2.39	1.9E	1.46	1.05	0.78	0.60	0.49	0,45		0.34	0.26	0.22	0.19	0.19	0.15	0.11	0.11	20:0	000	000
1		1													75.17	t	7	×	000	15.73	58 DB	40,45	56.18	68,54	76.40	82.02	85.39	86.52	88.76	68.68	92.13	93.26	94.38	94.38	95.51	96.63	96.63	87.75	100.00	
1	Air Fuel Natio (A/F)	Dry Molecular Weight (Md)	Dry Moles Exhaust Gas (Nr)	Air Fuel Ratio (A/F)			è							Deg. C	100	1	-	¥	4.04	3.40	2.90	2.40		1.27		0.73				0.41	0.32	0.27	0.23	0.23	0.18	0.14	0.14		000	
ľ	-	Dry Molecu	Dry Moles	Air Fue			19,752 kJ/h				100			129.8 Des	26.6	f	Fuel	Ratio	122.4	16.2				10.1		14.3						23.6		28.2				91.9	25.6	
	L	-	92.0%	74.5%			Btu/h I							Deg. F	57.3%	╀	#3	×	5.3%	%5'99	%5.79	68.2%	76.9%	77.4%	77.3%	75.4%	68.4%			25.75	52.6%	52.4%	53.7%	48.2%	40.8%	35.8%	34.7%	57.4%	62.5%	
							18.737 Bts		3.33333333 h		4/40			265.7 De	70.8%	t	Transfer	%		71.5%		73.2%		77.3%								73.7%		72.0%	942 49		67.1%		%9 08	
	ACCOUNT.	rerall Heating Efficiency	Combustion Efficiency	Heat Transfer Efficiency											L	L																								
		Overa	8	Ter		Heat Output	Heat Input		Burn Duration.		Burn Barn	LING		Stack Temp:	1 80.6%	۴	1	(oc) 3c		93.0%	0 92.0%	6 93.2%	80.66 9	7 100.1%	2 88.7%	7 97.8%	2 90.2%	Z 87.9%	2 80.0%	8 74.5%	8 71.8%	8 71.1%	8 72.5%	8 67.0%		3 55.1%	3 51.6%		3 77.5%	
								te CO2	Z			6			129.9 22.1	12	Flue Room	Gas (9C) Temp (9C)	1.7 20.6	196.1 20.0	180.0 20	189.4 20.	244.4 20	221.7 21.	189.4 21.	168 3 21	145.0 22.	22 22	3.4 22	1083 22	100.6 22	94.4 22.8	10 22.8	84.4 22.8	77.2 23.3	70.6 23	1,4 23.3	.1 23	7 23.3	
								5	CO2-ult 19.64	Æ	. 000	1.1			H		E		20,03 131.7						j	12.25 161						16.77 94	17.03 90	17.59 84			18.75 64	17,78 61	16.86 61	
									8						20 54 15.01	Oxygen Calculation	Total Cak. %	02 02 [8]	20,88 20	20.46 13	Ĵ	20.44 13		20.16 8	ű	20.39 12					20.61 16	20.63 16		20.68 17			20.75 18		20,65 16	
															359.9% 20	Oxygen	Excess To	Air EA C	945.1% 20	72 1% 20	Š.					-	Č	ó			298.4% ZC	315.3% 20	347.4% 20	399.8% 20		3	570.4% ZC	.3	344.4% 20	
					[CHV	74.0%	92.0%	80.5%	4/14	14	40	64	kJ/h	5.00	t	% Ex	CO2 [4] A	Ĉ	6.57 17.		-		11 78 66	ca.	8.01 13	6.06 18	.76 18		3.50 27	116 29	2.99 31	1.85 34	.26 39	1.47 \$4	108 64	1.06 57	2.32 45	1.15 34	
					1	+	+	+	74.5% 80	13.538	╀	+	+	19,752	H	1	*	(o [e] CC					ľ					1.03			1.77	1.74	7.7	1.67	1.59			1.21	127	
	alley	013			l	1	1	1	Ì	۲	t	+	1	+	t	Ł	L	_																						
		1/2			200	3	EH	Comb Eff	HE	Output	Britis Carre	Donu	Grams CO	MCwet	Averages	INPUT DATA	Weight	Remaining (kg)	4.04	3,40	2.90	2,40	177	1.27	56'0	0.73	0,59	0 5	0.45	0.41	0.32	0.27	0.23	0.23	0.18	0.14	0.14	600	0.0	
Manufacturer	Mode	Date	Run.	Control	Test Duration											1	Elapsed	Time	0	10	20	30	40	R	90	70	90	06	100	110	120	130	140	150	180	170	180	190	200	0

	25.70		Dean	000	4.75	3.19	2.97	0.36	-0.20	-0.10	0.21	0.71	290	1.16	1.48	1.64	1.12	0.52	0.63	1.51	0.85	0.93	2.45	
	381.49		CO H	000	74.17	46.99	45.63	6.72	0.65	1.84	5 35	10.45	9.53	15,55	19.84	21.95	14.98	7.16	8.60	20.80	11.76	12.58	35.10	
	5285		loca 2	0	1014	652	626	88	4	13	99	145	134	221	283	313	213	102	122	294	166	179	491	
SUMS	45833	1	Output		5656	5529	6308	7114	SISE	3429	2230	1013	750	670	607	584	388	199	178	301	132	128	1062	177
S	15461.28	100		1	3816.09	1956.49	2313.21	2045.18	1509.13	996.37	662.75	321.48	225.75	218.53	220.15	212.89	138.64	69.78	69.42	144.05	71.36	62.73	296.29	444 000
į	5825			1	1014	652	626	88	.4	13	99	145	134	221	283	313	213	102	122	294	166	179	491	
	20747	17.		1	4830	5609	2939	2133	1505	1009	729	467	360	440	503	526	352	171	192	438	237	242	787	***
AVERAGE	8451,50	Total	2 de 10	8756.75	6633.12	5350.62	5297.18	1569.70	1477.35	4504.45	4878,88	6250.80	6418.38	7855.15	75,578	69'6866	9428.20	9175,73	10256.39	1737.20	27.18.75	2943.47	8433,20	****
A	11973.73		H20 Fuel MC	П			595.82	619.25	90 609	595.37	586.43		570.05	565.62	560,74	557.49	554.94	553.08	550.75	547.53 1	544.75	542.21	540.83	
4 10 10 10	32307 \$1		H2O Comb H	1	666891	1663.10	682,45	784.77	1764.06	1723.62	1686.13	1608.14	1575.92	1512.56	1466.14	1440.51	1430.49	1436,15	(396.50	1350,73	1315,11	56,582,1	1414.63	and and
	46.90 3.	of Dry Fuel)	H	١.	11 99	134.71	56.25	13.38	-32.81	25.80	80.22	34.86	571.49	1153.60	(470.43	633.72	1666.24	1565.25	890.37	255.23	535.93	780.73	161.94	Section 1
SUMS	635,68 221	Energy Losses (kJ/kg of Dry	N2 C	10730.69 4	-	1920.12 43	2050.80 35	1488.35 4	1606.91	1625,58 -2	1659 31 8	1627.30 53	1446.24 67	11 66,7651	1462.79 14	1385.69 16	1328.70 16	1347.39 15	1365.34 18	1514.71 22	1518.62 25	184.31 27	942.83 14	00 000
	8513.72 58848.63 40635.68 22146.90	Energy L	8	2794.60 IO		175.18 19	005.30	148.80 1	20.00	84.59 16	367.80	1432.23 10	(738.84 1	2833.12	3611.72 14	3992.36	1084.21	3904.22 13	1682.52	19099	396.64 E	5836.61	3814.54 9	
	3513.72 St		02	2827.79 2	404.01	331.41 1	353.97	112.95	175.81	225.42	266.34	299,45	270.54	278.50 2	314.45 3	303.63 3	294.54 4	303.00 3	317.36 4	369.82 5	379.32 6	293.91 6	220.81 3	
	3055 24		202	136.60	262.85	234.05	252,60	372.21	334.31	275.67	232.65	172.46	145.30	113.75	89.29	76.28	69.09	66.64	53.54	38.57	28.37	21.72	37.63	44.00
	295.24	Room	×	293 71	293,15	293.15	293.71	293.71	284.82	294.82	294 82	295.37	295.37	295.37	295.93	295.93	295.93	295.93	295,93	296.48	296.48	296.48	296.48	200 40
	3766 43		HZO	3872 20	6169.50	5597.75	5913.55	7874.44	7021.89	5875.18	5127.09	4284.03	3756.03	3385.25	2976.45	2704.14	2490.42	2335.12	2141.16	1870.08	1637.83	1425.16	1309.25	4970 50
	4184.83	Temperatu	CHA	4225.51	7012,48	6298.78	10.9699	9221.40	8116.15	5657.17	5732.82	4720.76	4098.75	3668.59	3203.07	2894.95	2655.22	2482,19	2267.46	1971.41	1718.71	1489.26	1364.98	4300 60
	3148.21 311391 4184.83 3766 43	nge - Ambient to Stack Temperature	NZ	3199.05	5105.37	4630.32	4892.80	6524.35	\$814.77	4861.19	4239.92	3540.66	3103.08	2795.98	2457.67	2232.37	2055.61	1927.20	1766.87	1542.91	1351.06	1175.43	1079.74	4400 00
	3148.21	inge - Ambient to St	00	3235.32	\$159.48	4680,26	4945.01	6589.86	5874.59	4912.99	4286.13	3580.18	3138.26	2828.03	2486.14	2258.43	2079.76	1949,94	1787.83	1561.33	1367.30	1189.65	1092.84	440007
	3240.38	Heat Content Cha	05	3325.04	5320.82	4822.46	5097.97	6813.58	6067.07	5065 27	4413.98	3682.46	3225.29	2904.79	2552.15	2317.42	2133.36	1989,72	1832.91	1600.11	1400.75	1218.34	1118.99	4435 64
	4321.02	Heat	203	4407,62	7149.22	6457.82	6841.07	9247.47	8197,94	5798.77	5398.40	4897,12	4275.39	3841.79	3367.68	3052.75	2806.54	2628.16	2405.99	2097.32	1833.30	1592.40	1461.46	1463 25
	403.07	Stack	×	404.82	469.26	453.15	462,59	517 59	494.82	462.59	441.48	418.15	403.15	392.59	381.48	373.71	367.59	363.15	357.59	350.37	343.71	337.59	334.26	224.02
	11.94	Malatara	Present	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	11.94	44.04
	32.16		H20	34.41	33.71	33.55	33,78	34,43	34.60	34.58	34.34	33.33	33.02	31,94	31.23	30.86	30,79	31.02	30.29	29.47	28.84	28.29	31.24	27 71
	729.04	3	N2	3354.34	443.28	414.68	419.15	228.12	276,35	334.40	391.35	459.60	466 07	200.00	595.20	620.73	646 38	PF-669	772.75	981.72	1124.03	1007.55	873.21	201 76
	1.18	Moles ner for of Drug Mines	HC	900	0.41	0.48	0,40	50'0	0.04	-0.03	60'0	0.50	0.75	1 28	1.65	1.83	1.87	1.75	2.12	2.53	2.84	3.12	1.64	4.41
	9.83	Anlas nar bo	8	97.6	3.64	80.4	3.49	0.51	0.07	0,29	1.28	2.00	6.09	9.91	12.65	14,00	14.33	13.70	16.44	19.89	22.49	24.06	13.43	11 23
	156.37	ļŕ	05	850,45	75.93	68.72	69.43	16.58	28.98	120	60.34	8T.32	83.88	95.88	123.21	131.02	138.06	151.52	173.14	231.12	270.80	241.23	197.33	150 93
	29 80		C02	30.99	38.77	36.24	36.92	40.25	40.78	40.55	39.44	35.22	33.98	29.61	26.51	24.99	24 62	25.36	22.25	18.39	15.47	13.64	25.75	20 00

CBI

HHV LHV 8522.48 7885.21

Mosture Content MCwb 1770

Dry kg 3,32

CA. 48.73

HY 8.87

CX 43.90

3.32 3.32 31.50

Dirigo Laboratories, Inc.

Manufacturer:

Stoll

Model:

High Valley

Date:

1/28/2013

Run:

2

Control #:

10

Test Duration:

200

Output Category:

2

	HHV Basis	LHV Basis
Overall Efficiency	68.5%	74.0%
Combustion Efficiency	92.0%	92.0%
Heat Transfer Efficiency	74.5%	80.5%

HHV Output Rate (kJ/h)	13,528	12,833	(Btu/h)
Burn Rate (kg/h)	1.00	2.20	(lb/h)
Input (kJ/h)	19,752	18,737	(Btu/h)

Test Load Weight (dry kg)	3.3	7.3	dry lb
MC wet (%)	17.70		
MC dry (%)	21.50		
Particulate (g)	13.26		
CO (g)	381		
Test Duration (h)	3.33333333		

Emissions	Particulate	co
g/MJ Output	0.29	8.46
g/kg Dry Fuel	3.99	114.78
g/h	3.98	114.45
lb/MM Btu Output	0.68	19.66

Air/Fuel Ratio (A/F)	16.42
range and reading to deal	401.12

Test Results in Accordance with CSA B415.1-10

Technician: Be III

CBI

Default Fuel Values

	D. Fir	Oak
HHV (kJ/kg)	19,810	19,887
%C	48.73	50
%Н	6.87	6.6
% O	43.9	42.9
%Ash	0.5	0.5

Page 71/01/45

				0.039	70.000						lb/lb-mole		%	H	#2			7 ft/sec.	scfm	scfm							
			Pt.8	0.038	70						29.00	28.56	4.00	-0.400	0.196	0.99		13.15797 ft/sec.	148.8183 scfm	148.1049 scfm							
			Pt.7	0.042	70						AW(dry):	MW(wet):	nel H2O:	el Static:	Tunnel Area:	Pitot Tube Cp:											
			Pr.6	0.041	70						Dilution Tunnel MW(dry):	Dilution Tunnel MW(wet):	Dilution Tunnel H2O:	Dilution Tunnel Static:	Tun	Pitot		ity:	Flow:	nel Flow:							
		Information	Pt.5	0.036	70						Dilutic	Diluti	D	Di				Tunnel Velocity:	Intial Tunnel Flow:	Average Tunnel Flow:							
		Tunnel Traverse Information	Pt.4	0.040	70													F	-E	Ā		Notes:					
	HIGH VALLEY	T	Pt.3	0.036	70			TOTO	AVGT	297.6	333.2	348	362.6	384,4	357.6	349.2						Ž	T				
			Pt.2	0.040	7.0		2	MOTTO		300	352	346	343	349	358	382											
	Model Designation		Pt.1	0.042	70		4	5		558	542	538	535	526	433	385											
PREBURN				dP	Temperature		æ	DACY		264	303	315	336	365	271	241											
I I							2	TUDIO	SIDE	163	208	244	269	312	348	353											
							1	1557	SIDE	203	261	297	330	370	378	385											
			10			09		31113	DRAFT	-0.086	-0.068	-0.063	-0.07	-0.061	-0.056	-0.05											
	014-S-1-1 Al 9_27_12		ERVAL:					CCALE	READING	5.9	4.9	4.2	3.3	5.6	2.2	1.8											
CR	JOB # 014-S-1-1 TECHNICIAI DATE: 9_27_12	RUN #: 2	READING INTERVAL:		•	Run Time:			Е	0	10	20	30	40	50	09											

y vol

			-	7													
			Ì														
			Ĭ														
								_									
	STOVE	AVGT															
,	BOTTOM																
TURES	TOP																
TEMPERA	BACK TOP				Transition of the state of the												790 7957
	RIGHT	SIDE															
	LEFT	SIDE															217 71/12
1	FLUE	DRAFT															
	SCALE	READING															
		E															
	E	RT.	L														

Run# Date:

9/27/12

29.00 lb/lb-mole 28.56 [lb/lb-mole Dilution Tunnel MW(wet): Dilution Tunnel MW(dry):

Dilution Tunnel H2O:

-0.400 In H20 4.00 %

Dilution Tunnel Static:

 ft^2

0.196 Pitot Tube Cp: Tunnel Area:

0.039 0.038 Pt.8 0.042 Pt.7 Pt.6 0.041 Dilution Tunnel Traverse Data 0.036 Pt.5 0/ 0.040 Pt.4 Pt.3 0.036

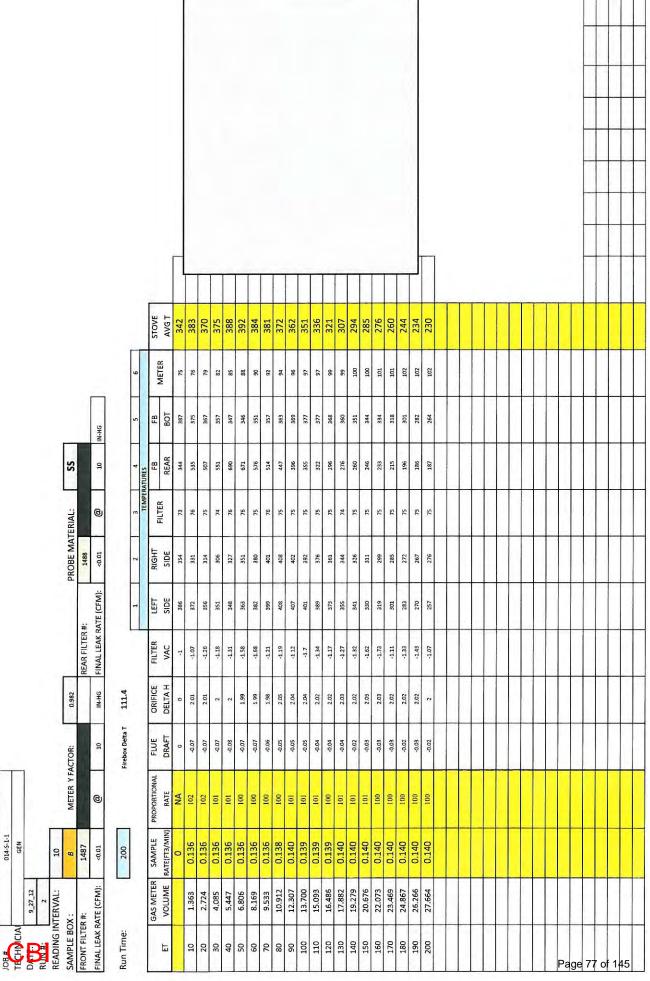
0.040 Pt.2

0.042 Pt.1

> Temperature dP

Tunnel Velocity:

13.158 ft/sec. 148.82 scfm


148.1 scfm Average Tunnel Flow Intial Tunnel Flow:

	AVG	30								AMBIENT	TEMP	69	89	89	69	69	17	71	71	72	72	72	73	73	73	73	73	74	74	74	74	74	1							
	END	30					%		9	METER	TEMP	74	9/	78	81	84	87	06	92	93	95	96	97	86	66	100	101	101	101	102	102	102								
1	MID	30					21.5		2	89	INT	6025.61	6025.06	6024.83	6024.76	6024.89	6072209	6025.28	6025.64	6025.94	6026.13	6026.54	6026.82	6027.21	6027.45	6027.78	6028.12	6028.45	6028.79	6059	6029.22	6029.41		T						
	BEG	30		SS	Ī			1	4	FB REAR	TEMP	238	301	306	312	228	228	231	234	235	235	228	218	208	200	194	194	193	179	170	164	168								
1					L	N-HG	IRE DB		3	FILTER	TEMP	7.7	9/	75	74	76	75	75	75	75	74	74	74	74	74	74	75	75	75	75	75	75								
				RIAL:		10	FUEL MOISTURE DB		2	FLUE	TEMP	569	385	356	373	472	431	373	335	293	597	247	227	213	202	194	184	171	159	148	142	143								
				PROBE MATERIAL:		6	LITERS	IN-HG	1	TUNNEL	TEMP	89	29	89	69	69	70	70	70	70	7.1	71	7.1	71	71	72	72	72	72	72	72	72								
1	<u>E</u>	BAROMETRIC		.=.	1486	<0.01				Weight	Chg	0	1.4	1.1	1.1	1.4	1.1	0.7	0.5	0.3	0.1	0.2	0.1	0.2	0.1	0.1	0	0.1	0.1	0	0.1	0.2								
	ROOM TEMP (F)	BA			#:	(CFM)	VOLUME	9		Scale	Weight	8.9	7.5	6.4	5.3	3.9	2.8	2.1	1.6	1.3	1.2	1	6.0	0.7	9.0	0.5	0.5	0.4	0.3	0.3	0.7	0								
	S. B.				REAR FILTER #:	FINAL LEAK RATE (CFM)	N.			Proportional		NA	101	102	101	101	100	100	100	100	101	101	101	100	101	100	100	100	101	100	101	100								
					REAR FILTER #				-	TUNNEL VEL P	FT/SEC		13.015	13.027	13.040	13.040	13.052	13.052	13.052	13.052	13.064	13.064	13.064	13.064	13.064	13.077	13.077	13.077	13.077	13.077	13.077	13.077								
0			Ī	1.014	2	IN-HG	ER #:	(CFM):		FILTER	VAC	-0.12	0	-1.82	-1.83	0	0	0	-1.93	-1.83	-2.01	-0.18	-2.14	0	-0.74	0	-1.78	0	-0.32	-1.7	-2	-0.72								
			-	TOR:		10	AMBIENT FILTER #:	FINAL LEAK RATE (CFM):		ORIFICE	DELTA H	90.0	1.95	1.96	1.95	1.94	1.96	1.94	1.94	1.99	2	1.97	1.98	1.97	1.97	2	1.98	1.99	1.96	1.97	1.96	1.96								
				METER Y FACTOR:		®	<u> 4</u>	u.		TUNNEL	DELTA P	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039								
T-T-C-+TO	GEN		10		1485	<0.01	200			SAMPLE	RATE(FT3/MIN)	0.000	0.138	0.139	0.138	0.139	0.139	0.140	0.140	0.141	0.142	0.142	0.142	0.142	0.142	0.142	0.142	0.142	0.143	0.142	0.143	0.142								
		9_27_12	TERVAL:	(:	#:	TE (CFM):			TIME:	GAS METER	LLT.	0.000	1.381	2.766	4.149	5.536	6.927	8.324	9.723	11.128	12.547	13,964	15.386	16.804	18.227	19.646	21.070	22.491	23.918	25,340	26.768	28.190								
	TECHNICIA	DAGE!	READING INTERVAL:	SAMPLE BOX:	FRONT FILTER #:	FINAL LEAK RATE (CFM):	Run Time:		TEST START TIME:		ET	0	10	20	30	40	20	09	70	80	90	100	110	120	130	140	150	160	170	180	190	200			C	200	7/.	5 of	1/	

the sell

,	7
	3
	2
,	W
	'

3 4 5 6 TEMPERATURES	FIL	1P TEMP TEMP INT TEMP TEMP												
1 2	TUNNEL FLUE	TEMP TEMP												
	Weight	Chg												
	Scale	Weight												
	Proportional	Rate (%)												
	EL	FT/SEC												
	FILTER	VAC												
	ORIFICE	DELTA H												
	TUNNEL	DELTA P												
	SAMPLE	RATE(FT3/MIN)	22											
IESI SIAKI IIME:		VOLUME												

the Not

My M

	STOVE	AVGT								3 111
	88	BOT IMETER								347 93
ATHRE	FB	REAR								381
TEMBERATIBES	CT.	FILIER								75
	RIGHT	SIDE								337
	LEFT	SIDE								352
	FILTER	VAC			3					-1.318571
	ORIFICE	DELTA H								2.016
	FLUE	DRAFT								-0.045
	PROPORTIONAL	RATE								100.619
	SAMPLE	E(FT3/MIN)								0.138
	GAS METER SAMPL	VOLUME RATE(FT3/MIN)								27.664 0.138

230.4

Ge Nol

SAMPLE A INFORMATION		NO		feet/second	dscf/hour	dscf			L.	in-h20	min	BE	0.00030 grams/dscf 2.65 grams/hour 4.09 grams/hour		
Average Gas Meter Temperature Average Gas Meter Temperature Average Gas Meter Temperature Average Gas Meter Temperature Average Belta H Total Time of Test Total Time of Test Average Concentration (dry-standard) Particulate Concentration (dry-standard) Particulate Emissions Average Belta H Total Time of Test Total Time of Test Total Farticulate Emissions Average Belta H Total Farticulate Emission Average Belta H Total Farticulate Sambustreb Adjusted Emissions Average Belta H Total Farticulate Sambustreb Average Belta H Total Farticulate		SAMPLE B INFORMATION	27.66	13.16	8886.29	26.13	70.5	0.039	93	2.02	200	7.8	0.0	grams/hour	102.7
Total Sample Volume - Vm Average Gas Velocity in Dilution Tunnel - Vs Average Gas Flow Rate in Dilution Tunnel - Csd Average Gas Flow Rate in Dilution Tunnel - Csd Average Gas Flow Rate in Dilution Tunnel - Csd Average Gas Flow Rate in Dilution Tunnel - Csd Average Cas Flow Rate in Dilution Tunnel - Csd Average Cas Flow Rate in Dilution Tunnel - Csd Average Delta p Average Delta p Average Delta h Total Fime of Test Total Particulates Adjusted Emission Rate Adjusted Emissions Average Average Aver				feet/second	dscf/hour	dscf	<u> </u>		<u>_</u>	in-h20	mim	gm _	28 grams/dscf 19 grams/hour 38 grams/hour	3.98	
A Ave		SAMPLE A INFORMATION	28.19	13.16	8886.29	27.51	70.5	0.039	93	1.97	200	7.7	0.000.2		67.3
		77	Total Sample Volume - Vm	Average Gas Velocity in Dilution Tunnel - vs	Average Gas Flow Rate in Dilution Tunnel - Qsd	Total Sample Volume (Standard Conditions) - Vmstd	Average Tunnel Temperature	Average Delta p	Average Gas Meter Temperature	Average Delta H	Total Time of Test	Total Particulates	Particulate Concentration (dry-standard) Particulate Emission Rate Adjusted Emissions	AVERAGE ADJUSTED EMISSIONS	% OF AVERAGE
	JOB NUMBER		BURN RATE			FILTER A PARTICULATE	FILTER B	PARTICULATE							

Stoll Trailers, Inc.

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Run 3:

VERSION: 2.4 4/15/2010

lanufacturer: Stoll

Model: High Valley
Date: 1/28/2013
Run: 3

Control #: 10 est Duration: 140 urn Category 3

Wood Moisture (% DRY): 20.5
Wood Moisture (% wet): 17.01

Load Weight (lb wet): 8.70
Burn Rate (dry kg/h): 1.40
Total Particulate Emissions: 5.99

Appliance Type: Non-Cat (Cat, Non-Cat, Pellet)

Temp. Units F (F or C)

Weight Units | Ib (kg or Ib)

Fuel Data

D. Fir

HHV 19,810 kJ/kg

%C 48.73

%H 6.87

%O 43.90

%Ash 0.50

	Averages	352.1	80.7	13.49	5.93	0.79
			p. (F)			
Elapsed	Fuel Weight	Flue	Room		as Compositi	
Time (min)	Remaining (lb)	Gas	Temp	O2	CO2	CO
0	8.7	299.0	81.0	17.92	1.80	0.53
10	6.7	531.0	81.0	8.88	11.28	0.14
20	4.9	569.0	82.0	7.12	13.15	0.08
30	3.1	568.0	82.0	5.91	14.15	0.05
40	2.0	489.0	83.0	9.72	10.17	0.00
50	1.4	413.0	83.0	12.29	7.50	0.19
60	1.1	368.0	82.0	13.02	6.53	0.45
70	0.9	325.0	82.0	14.61	4.42	1.15
80	0.8	289.0	80.0	15.65	3.10	1.50
90	0.6	263.0	81.0	16.30	2.48	1.53
100	0.5	251.0	80.0	15.97	2.96	1.43
110	0.4	240.0	79.0	16.13	2.90	1.37
120	0.2	233.0	79.0	16.05	3.01	1.27
130	0.1	225.0	78.0	16.50	2.56	1.23
140	0.0	219.0	78.0	16.34	2.95	0.96
				en and the second		

g

Page 81 79 145 New

CBI

6 (8tg)	2 43,678 (Btu)		4			Load Weight (kg), 3.95	. 150	Value in kJ/kg - CV 19810.00			1 79 11 20.98 1.68 5.58	Mass Balance	(moles/100 male dry flue gas)	mt [h] [u] [w] [J]	1 78.95 20.94 0.59 1.92	1 79.74 21.15 2.81 9.65	79.89 21.19 3.26 11.19	12.21 3.50 12.01	79.73 21.15 2.50	1 79.47 21.08 1.90 6.50	79.30 21.03	78.85	78.61 20.85 1.18 3,67	78.56 20.84 1.04 3.17	1 78.63 20.86 1.13 3.50	1 78.56 20.86 1.09 3.41	78.71 20.88 1.09 3.44	1 78.70 20.87 0.97 3.03	78.84 20.91 0.99 3.18	
Combustion Efficiency: 96.5%. Total Input (kJ): 64,894			Total CO (g): 167.64								87 2.74 19810.00 17.01	Mw	Daygen Calorific	/1= [b] /16= [c] Value Fuel Burn	6.87 2.74 19810,00 17.01	6.87 2.74 19810.00 17.01	5.87 2,74 19810,00 17.01	5.87 2.74 19810,00 17,01	2.74	6.87 2.74 19810.00 17.01	5.87 2.74 19810.00 17.01	19810.00	6.87 2.74 19810.00 17.01	5.87 2,74 19810.00 17.01	6.87 2.74 19810.00 17,01	5.87 2.74 19810.00 17.01	5.87 2.74 19810.00 17.01	6.87 2.74 19810.00 17.01	5.87 2.74 19810.00 17.01	A LAC LACAL CONTROL OF THE PARTY OF THE PART
%HC. 1,32										Charles of the Control of the Control	75.94 65267 4.06 6.87	% Dry Fuel Properties	Carbon	y input /12=[a] /1=	0.00 0 406 6.	22,99 21631 4,06 6.	43.68 13426 4.06 6.	64.37 10816 4.06 5.	6340 4,06	83.91 3357 4,06 6,	87.36 1865 4.06 6.	1119 4.06	90.80 1119 4.06 6.	93,10 1119 4,06 6,	94,25 746 4,06 6.	95,40 1119 4,06 6.	97.70 1119 4.06 6.	98.85 1119 4.06 B.	100.00 373 4.06 6.	
Dry Molecular Weight (Md) 29 52 Dry Molecular Weight (Md) 29 52 Air Fuel Natio (A/F) 15.09 1									U.		5 10:0 5:94 0:01 7:	WetWt % Wet Dry Wt. %	Consumed Now	×	0.00 3.28	22.99 2.52	43.68 1.85	64.37 1.17	77.01 0.75	83.91 0.53	87.36 0.41	89.66 0.34	0.36 90.80 0.30 90	0.27 93.10 0.23 9:	0.23 94.25 0.19 94	0.18 95.40 0.15 9	6.09 97.70 0.08 9	0.05 98.85 0.04 98	0.00 100.00 0.00 10	
71.0% Dry Male 96.5% Dry Male 73.5% Air F.		Btu/h 19,737 kJ/h	Btu/h 27,812		133 h.		15/h 1.4 kg/h		Deg. F 180.0 Deg. C		60.3% 22.1	Net Ah	13	Ratio	49.5	10.4	9.0	8.4	11.7	15.4	16.8	58.5% 20.6	49,4% 24.4	45.6% 27.8	51.7% 25.6	52.6% 26.4	55,0% 26.4	52.2% 29.7	58.9% 29.2	
Overall Heating Efficiency: Combustion Efficiency: Heat Transfer Efficiency		Heat Output: 18,722	Heat Input: 26,382.	2	Burn Duration. 2.33333333		Burn Rate, 3.1		Stack Temp: 355.9	The second second	27.1 85.7% 69.9%	Combust	E# 12	4				27.8 99.8% 75.3%	100 3%	98.4%	95.1%	83.7%	26.7 74,4% 66,3%		26.7 74.5% 69.4%	26.1 74.9% 70.2%	26.1 76.8% 71.6%	25.6 74.8% 69.8%	25.6 81.0% 72.8%	
				Ultimate CO2	CO2-ult 19.64	2	1.060			- 3	% 20.50 14.17 177.9	Oxygen Calculation Input Data	Total Cak, %	02 02[4] 6	20.79 18.72	20.19 8.84	20,07 6.88	20,00 5.83	20.27 10.10	20,43 12.84	20.48 13.72	20,57 15,58	% 20.64 16.79 142.8	20.68	20.65	70.66 17.07	20.66	20.69 17.51	1% 20.68 17.25 103.9	
lley 313	1	HHV CHV	Eff 71.0% 76.7%	Comb Eff 96.5% 96.5%	HT EH 73.5% 79.5%	Output 19,737 kJ/h		168	Input 27,812 kJ/h	17.01	Averages 0.79 5.93 279.2%	TA	*	(kg) co [e] coz [d]	0.53 1.80	0.14 11.28	0.08 13.15	0.05 14.15	0.00 10.17	0.19 7.50	0.45 6.53	1.15 4.42	1.50 3.10	1.53 2.48	2.96	1.37 2.90	1.27 3.01	1.23 2.56		
33.7	Test Duration: 1		7	Con	Ŧ	O	Bur	Gra	E	MC	Ave	1	_	Time Remain	0	10	20 2					0 02				0 011		j	TAD OF	

Mr. NOR

														SMNS		A TOWNS OF THE	AVERAGE				SUMS			
32.80 11.39	11.39	4	451.00	6156.37	4569.56	4426.10	4380.71 60	6091.71 52	5290.98 34	300.22 32	3279.14 63	6328.88 311	31161.83 330	33008.01 11575.93	.93 24280,13	841531	7869.95	18842	2255	16587.17	46425	2255	167.64	10.08
		ΙŃ	Stack	Hear Co	Heat Content Change		Ambient to Stack Temperature	mperature	Ī	Room			Energy Los	Energy Losses (M/kg of Dry Fuel)	Dry Fuel)		Total							
Moisture	olsture	۲	Тетр		Rue	ue Gas Constituen	thuent	Í	-	Temp			Hue	Hue Gas Constituent	ent.		tsoy	Total	Chemical	Sensible and	Total	Chem	Grams	Produced
H2O Present	esent	The state of	×	200	0.5	9	NZ	CH4	H20	*	203	02 (00	N2 CH4	4 H2O Comb	b HZO Foel M	Rate	Loss	Loss 1	Latent Loss	Output	Loss 2	8	¥
32.90 11.39	11.39		ľ	4845,28	3637.01	3534,41	3495.72 4	1684.94 42	1228 75 3	300,37 14	149 74 11	169.00 260	606.88 47	4738.28 724	19 1585.90	548 92	11522.90	0	0	000	0	0	000	000
34.48 11.39	11.3		j	10468.95	7652.59	7386.02	7315.83 10	057296 88	8820.91 3	100.37 42	2.80 2.	241.52 14	(45.21 20)	2083.78 19.92	1820.13	601.22	5333.56	5824	176	5647.91	15807	176	15,29	0.39
	11.39		7	11414.73	8308.18	8009.73	7935.52 11	1606.43 95	9562.89 3	900.93 46	53.02 I.		91 18.17	955.69 1.66			5125.96	3474	88	3425.71	9952	9	4.68	0.02
34,53 11,39	11.39			11389.11	8290.44	7992.86	7918.76 11	1578.40 95	9542.82 3	300.93 46	163.25 13	38.87 4.	1.82 18.	820.40 -5.41		609 45	4916.39	2684	16	2664.91	8131	51	2.20	-0.05
34.65 11,39	11,39		527.04	9372.64	6881.78	6649,80	6584.96 9:	9398.81 79	944.13 3	01.48 38	383.13 27	79.33 0	0.00	2110.32 -58.74			5104.24	1634	-19	1652.23	4707	-19	000	-0.33
	11.3			7505.91	5558.73	5383.33	5328.31 74	7422.69 64	5434.99 3	301.48 29	298.49 37	Ĭ.	290,52 22				5556.58		X	887.56	2415	X	4.78	010
34.02 11,39	11,3			6446.25	4799.29	4654.19	3	5319.30 55	565.42 3	300.93 24	244.60 38	382.74 75		2122.00 226.68		564.15	5977.33	263	16	471.82	1302	16	6.89	0.38
32.49 11.39	113			5430.29	4063.21	3945.40		5278.90 47	-		ũ	ï	1357.47 23				8228.08	465	183	282.19	654	183	12.99	0.92
	3			4634 96	3483.66	3386.51	3349.20 4	471.65 40	2 51,250	29.82 12		***					10030.13		286	280.23	552	286	20.20	1.48
30.74 11.39	=			4015.82	3027.30	2945.08	2912.18 38	3854.65 35	524.66 3	96 75.008	98.66 53	512.14 424	1246.11 22	ũ		\$40.90	10768.01	809	332	275.68	511	332	23.48	1.71
•	ä			3763,16	2841.25	2765.16	2734.04 BE	3502.47 33	3309 68 2	239.82	Ã			1919.50 1445			9561.12	360	190	169.76	386	190	13.46	0.97
31.36 11.39	11.3			3534,44	2672.41	2601.79	2572.31 3	3375.10 31	1114.43 2	299,26 9	~	19.18 35	3594.69 18:	1858.88 1413		C1	9393.49	531	281	249.81	588	281	19.90	143
31.62 11.3	11.3			3375,95	2554.72	2487.73	2459.43 3,	3219.04 29		299.26		"			.12 1484.51	C)	8923.06	808	360	244.35	615	360	18.47	131
	11,39		380.37	3216,57	2436.76	2373.51	2346.38 30	3061.29 28	2841.54 2	298.71 8	9		634.80 19	1912.14 1397.79		533.12	9474.61	535	282	252.86	584	282	20.14	1.41
32 74 11 30	11 50	ce	277 FM	9081.50	2326 13	2275 90	25 NE ONCE	TO 20 000	10464	A 17. 900	No. of		ar our			-	5	****	-					

CBI

Mothife Content Mcwb 17.01 0vv kg. 3.28 6A. 48.73 HV 6.87 OX 43.90

> 17.01 3.28 20.50

Dirigo Laboratories, Inc.

Manufacturer: Stoll

Model: High Valley Date: 1/28/2013

 Run:
 3

 Control #:
 10

 Test Duration:
 140

 Output Category:
 3

	HHV Basis	LHV Basis
Overall Efficiency	71.0%	76.7%
Combustion Efficiency	96.5%	96.5%
Heat Transfer Efficiency	73.5%	79.5%

HHV Output Rate (kJ/h)	19,737	18,722	(Btu/h)
Burn Rate (kg/h)	1.40	3.09	(lb/h)
Input (kJ/h)	27,812	26,382	(Btu/h)

Test Load Weight (dry kg)	3.3	7.2	dry lb
MC wet (%)	17.01		
MC dry (%)	20.50		
Particulate (g)	5.99		
CO (g)	168		
Test Duration (h)	2.333333333		

Emissions	Particulate	co
g/MJ Output	0.13	3.64
g/kg Dry Fuel	1.83	51.17
g/h	2.57	71.84
lb/MM Btu Output	0.30	8.46

Air/Fuel Ratio (A/F)	15.09
----------------------	-------

Test Results in Accordance with CSA B415.1-10

Technician:

Default Fuel Values

	D. Fir	Oak
HHV (kJ/kg)	19,810	19,887
%C	48.73	50
%Н	6.87	6.6
%O	43.9	42.9
%Ash	0.5	0.5

Page/85 of 145

				0.039	70,000								lb/lb-mole						ft/sec.	scfm scfm	2 scfm					
			Pt.8	0.038	70							29.00	78.56	0.400	0.190	0.99			13.24685 ft/sec.	148.8183 scfm	147.1112 scfm					
			Pt.7	0.042	70							MW(dry):	MW(wet):	nol Ctotio:	Tinnel Area:	Pitot Tube Cp:										
			Pt.6	0.041	70						į	Dilution Tunnel MW(dry):	Dilution Tunnel MW (wet): Dilution Tunnel H2O:	Dilution Tunnel Station	muloman Tur	Pitot			city:	I Flow:	nel Flow:					
		e Information	Pt.5	0.036	70							Dilut	Dilut		2				Tunnel Velocity:	Intial Tunnel Flow:	Average Tunnel Flow:					
		Tunnel Traverse Information	Pt.4	0.040	70																		Notes:			
	HIGH VALLEY		Pt.3	0.036	70				STOVE	AVGT	342	352.6	367.2	270.4	370.7	376.6	373.2	367.8								
			Pt.2	0.040	70		5		воттом		403	435	424	i co	403	431	441	456								
	Model Designation		Pt.1	0.042	70		4	TURES	TOP		579	537	565	2 5	450	430	413	380								
PREBURN		L		dÞ	Temperature		e	TEMPERATURES	BACK		185	189	197	330	220	238	231	230								
4							2		RIGHT	SIDE	298	341	373	277	417	423	416	403								
							1		LEFT	SIDE	245	261	277	222	327	361	365	370	A							
			10			80			FLUE	DRAFI	-0.076	-0.077	-0.066	1000	-0.071	-0.051	-0.065	-0.052								
	014-S-1-1 N 9 27 12	3 - 1,7 - 1,5	READING INTERVAL:						SCALE	READING	7.4	6.3	5.2	r o	3.7	2.8	2.4	2.1								
	JOB # 014-5-1-1 TECHNICIAI DATF: 9 27 12		EADING IN			Run Time:			t	I 0	0	10	20	3 6	04 05	09	70	80								

																The second second	
	STOVE	AVGT															
S	BOTTOM																
4	۲																
3 TEMPERATUR	BACK TOP																214.1111
7	RIGHT																2.
1	H	SIDE	-														315
	H	DRAFT	H														
	L	READING	┖														
	5	ET RE							-1								
C	E	H	L														

Run#

Date:

9/27/12

29.00 [lb/lb-mole Dilution Tunnel MW(dry):

28.56 [lb/lb-mole 4.00 % Dilution Tunnel MW(wet): Dilution Tunnel H2O:

Dilution Tunnel Static:

-0.400 In H20 Tunnel Area: Pitot Tube Cp:

		Dilu	Dilution Tunnel Traverse Data	el Traver	se Data			
	Pt.1	Pt.2	Pt.3	Pt.4	Pt.5	Pt.6	Pt.7	Pt.8
dЬ	0.042	0.040	0.036	0.040	0.036	0.041	0.042	0.038
Temperature	20	0/2	70	0/	0/	70	70	70

0.039

Intial Tunnel Flow: Tunnel Velocity:

13.247 ft/sec. 148.82 scfm 147.11 scfm Average Tunnel Flow

CBI

				ROOM TEMP (F)	IP (F) BAROMETRIC	78.0			BEG 30	MID 30	END 30	AVG 30
1,014	-					PROBE MATERIAL:	TERIAL:		SS			
		REAR FILTER #	REAR FILTER #:	TER #:	1490							
IN-HG			FINAL LEAK RATE (CFM)	ATE (CFM)	<0.01	©	10	N-HG				
AMBIENT FILTER #:				VOLUME		UTERS	FUEL MOISTURE DB	TURE DB		20.5	%	
K RATE (CFM).				0		IN-HG						
						1	2	3 TEMPER	TEMPERATURES	S	9	
ORIFICE FILTER DELTAH VAC		TUNNEL VEL FT/SEC	Proportional Rate (%)	Scale	Weight	TUNNEL	FLUE	FILTER	FB REAR TEMP	FB INT	METER	AMBIENT
90.0- 90.06			NA	8.7	0	76	299	76	252	6033.95	87	81
1.95 -0.07	-	13.150	102	6.7	2	78	531	87	306	6034.44	87	81
1.95 -2.23		13.150	101	4.9	1.8	78	569	88	333	6034.94	89	82
-0.25		13.162	100	3.1	1.8	79	268	84	366	6035.33	92	82
1		13.162	102	2	17]	79	489	82	270	9209	95	83
1		13,162	101	1.4	9.0	79	413	81	278	6036.24	86	83
1.97 -1.47	_	13.162	101	1.1	0.3	79	368	81	275	6036.62	100	82
+	_	13.162	100	6.0	0.7	8 8	325	08	7/7	6036.87	103	78
1.96 -1.79	-	13,150	100	0.6	0.1	8/ 8/	263	8 8	242	6036.64	105	8 8
	-	13.126	100	0.5	0.1	76	251	80	228	6036.55	106	80
1.99 -2.31	_	13.138	100	0.4	0.1	11	240	79	220	6036.36	107	79
		13.138	100	0.2	0.2	11	233	79	217	6036.2	108	79
1,98 -0.23		13.126	100	0.1	0.1	76	225	79	213	6036.23	108	78
-2.2		13.126	100	0	0.1	9/	219	78	217	6035.83	108	78
	-											
	-											
	-									1 1		
	-											
	-										100	
	_											
	-											
	-											
	-											
	-											
	+											
	+											
	-											
1												

the sold

	AMBIENT												
9	METER	TEMP											
2	FB	INT											
4 ATLIBEC	FB REAR	TEMP											
3 4	FILTER	TEMP											
2	FLUE	TEMP											
1	TUNNEL	TEMP											
	Weight	Chg											
	Scale	Weight											
	Proportional	Rate (%)							n p				
	TUNNEL VEL	FT/SEC											11.70
	FILTER	VAC											
	ORIFICE	DELTA H											
	TUNNEL	DELTA P											0000
	SAMPLE	RATE(FT3/MIN)											
IEST START TIME:	GAS METER	VOLUME R	-										2000

									Г																														
										-										T	Ī				_	1													
								STOVE	AVGT	438	464	464	461	447	432	414	330	366	346	331	319	308	300																
				Г			9	METER		87	8	93	96	66	101	103	104	105	107	107	108	108	108																
					IN-HG		s	FB	BOT	462	448	447	449	452	248	444	435	423	414	404	389	375	360																
			SS		10		3 4	FB	REAR	352	774	801	712	582	105	433	373	332	305	287	274	264	255																
			ATERIAL:		9		3 TEMAD	FILTER		77	88	84	82	80	08	88	79	78	78	87	78	78	78																
			PROBE MATERIAL:		<0.01		2	RIGHT	SIDE	398	384	415	449	476	478	469	446	416	387	364	345	331	318																
				3#:	FINAL LEAK RATE (CFM):		1	LEFT	SIDE	373	381	393	424	449	456	455	441	419	398	381	368	356	350																
				REAR FILTER #:	FINAL LEAK					4.53	-1.27	-1.48	-1.51	-1.44	-1.88	-1.29	-1.2	-1.58	-1.3	-1.48	-1.31	-1.85	-1.75																
			0.982		IN-HG	67.4		ORIFICE	DELTA H	0 8	1.96	2.01	1.97	1.99	1.98	1.98	2.03	2.03	2,02	2.03	2.05	2.02	2.04																
	r e		ACTOR:		10	Firebox Delta T			DRAFT	0.08	-0.09	·0.09	-0.08	-0.07	-0.06	-0.05	-0.05	-0.05	-0.05	0.04	0.04	-0.04	-0.04																
			METER Y FACTOR:	(3			PROF	RATE	102	100	100	101	100	100	100	101	101	101	101	101	101	101																
014-S-1-1 BTN		10	В	1491	<0.01	140			RATE(FT3/MIN)	0.138	0.136	0.136	0.138	0.138	0.138	0.139	0.140	0.141	0.141	0.141	0.141	0.141	0.141																
	9_27_12	VTERVAL:	: XC	##	SATE (CFM):			~	VOLUME	1.377	2.739	4.097	5.476	6.855	8.238	9.624	11.024	12.434	15,842	15.251	16.662	18.0/4	19.484																
TECHNCIA	Banga Bang Bang	READING INTERVAL:	SAMPLE BOX:	FRONT FILTER #:	FINAL LEAK RATE (CFM):	Run Time:			<u> </u>	10	20	30	40	50	09	70	80	90	100	110	120	130	140									F	Pag	je	91	of	14	5	

the self

Berleh

			-		1		T	1						1	_	_	1
			-	÷			-				-			H			
			Г														
			-					H							- 5		
			-		_	-	-	H		-		-	_			_	
										Ш							
															T		
	STOVE	AVGT														67	Ę
	1	METER														100	MIC
	8	BOT														427	AVICE
	F		-													461	
TURES	89	REAR														4	DIV.
TEMPERATURES		FILTER														80	AVIC
	RIGHT	SIDE														404	AVICE
	H	-										_				401	
	LEFT	SIDE													j	4	VANC
	FILTER	VAC												T		-1.458	Alic
	ORIFICE	-															AVG
	ORI	DEL														-0.055 2.007857	9
	FLUE	DRAFT														-0.055	AVG
	DNAL					-					Ī					100.609	
	PROPORTIONAL	RATE					H									100	AVG
	-		H							Ħ						6	
	SAMPLE	RATE(FT3														0.139	AVG
	GAS METER	VOLUME RATE(FT3/MIN)							ľ					- 1		19.484	TOTAL
	GAS	VOL								<u>.</u> 1						19.	101
		E,	В	XI													

300

Mr. Mall

			feet/second	dscf/hour				<u> </u>	in-h20	Jmin	88 L	0.00018 grams/dscf	1.55 grams/hour 2.62 grams/hour		
	SAMPLE B INFORMATION	19,48	13.25	8826.67 18.17		7.77	0.039	100	2.01	140	3.2	0.0001	1.5	grams/hour	102,2
			feet/second	dscf/hour dscf		ш		ш	in-h20	Jmin	Jmg	0.00017 grams/dscf	2.51 grams/hour	2.57	
	SAMPLE A INFORMATION	19.88	13.25	8826.67 19.15		7.77	0.039	100	1.97	140	3.2	0.00017	1.47		97.8
	12	Total Sample Volume - Vm	Average Gas Velocity in Dilution Tunnel - vs	Average Gas Flow Rate in Dilution Tunnel - Qsd Total Sample Volume (Standard Conditions) - Vmstd		Average Tunnel Temperature	Average Delta p	Average Gas Meter Temperature	Average Delta H	Total Time of Test	Total Particulates	Particulate Concentration (dry-standard)	Particulate Emission Kate Adjusted Emissions	AVERAGE ADJUSTED EMISSIONS	% OF AVERAGE
	DATE: 9_27_12	1,40 KG/HR DRY		3.2	SS E	6 6	gm 3.5								
JOB NUMBER		BURN RATE		FILTER A	PARTICULATE	FILTER B	PARTICULATE								

Stoll Trailers, Inc.

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Run 4:

VERSION: 2.4 4/15/2010 Appliance Type: Non-Cat (Cat, Non-Cat, Pellet) lanufacturer: Stoll Model: High Valley Temp. Units Date: 1/28/2013 (For C) Weight Units lb Run: 4 (kg or lb) Control #: 10 est Duration: 80 urn Category 4 Fuel Data D. Fir Wood Moisture (% DRY): Dougla O Oak HHV Wood Moisture (% wet): 18.70 19,810 kJ/kg Load Weight (lb wet): 8.60 %C 48.73 %H Burn Rate (dry kg/h): 2.38 6.87 Total Particulate Emissions: 3.21 %0 43.90 %Ash 0.50 6.83 **Averages** 531.1 75.2 13.04 0.34 Temp. (F)

Elapsed	Fuel Weight	Flue	Room	Flue G	as Compositi	on (%)
Time (min)	Remaining (lb)	Gas	Temp	02	CO2	CO
0	8.6	335.0	76.0	18.71	1.13	0.47
10	7.3	594.0	76.0	11.40	8.63	0.11
20	5.0	697.0	75.0	8.19	11.93	0.02
30	2.9	692.0	76.0	7.04	12.87	0.01
40	1.7	611.0	76.0	10.77	9.30	0.00
50	0.9	545.0	75.0	13.06	7.01	0.11
60	0.5	480.0	75.0	15.32	4.46	0.55
70	0.3	431.0	74.0	16.16	3.42	0.79
80	0.0	395.0	74.0	16.73	2.73	0.96
		10 100000000000000000000000000000000000				

CBI

Page 95/04/15 NW

Model: High Valley	Date: 1/28/2013 Run 4	Control #: 10	Test Duration, 80		FF	Comb Eff	HT EH	Output	Burn Rate	Grams CO	Input	MC wet	Averages	INPUT DATA	Elapsed Weight	Time Remaining (kg)	0 3.90	10 3.31	20 2.27		40 0.77		60 0.23	70 0.14		
٨	m		cilia	AHH	64.5%	F 98.5%	65.5%	30,409	2.38	30	47,133	18.70	0.34	TA	8	[Ac) CO [4]	0.47	0.11	0.02	0.01	0.0	0,11	0.55	67.0	96'0	
				CHA	%4.69	98.5%	70.8%	KJ/h	4/2×	24	kJ/h		6.83		*	CO2 [d]	1.13	8.63	11.93	12.87	9.30	7.01	4.46	3.42	2.78	
													305.3%	MXO	Excess	Alr EA	1127 7%	124.7%	64.4%	52.5%	111.2%	175.9%	292.1%	366.5%	432.3%	
													20.47	Oxygen Calculation	Total	05	20.83	20.36	20.15	20.09	20.33	20.47	20.61	20.66	20.70	
						7	CO2-vit						13,47	tion	Calc, %	02 [8]	19.47	11.68	8.21	721	11.03	13.40	15.87	16.85	17.49	
						Ultimate CO2	19 64	£	1.060				277.3	Input Data	Flue	Gas (9C) 7	168.3	312.2	369,4	366.7	321.7	285.0	248.9	221.7	201.7	
				He	*		Burn				55		24.0	Data	Воот	Temp (PC)	24.4	24.4	23.9	24.4	24.4	23.9	23.9	23.3	23.3	
	Overall Heating Efficiency: Combustion Efficiency:	Heat Transfe		Heat Output	Heat Input		Burn Duration 1,3		Burn Rate		Stack Temp:		92.8%	Combust		×	79.1%	%€ 66	100.1%	100.1%	100.4%	99.2%	91.7%	85.5%	79.9%	
	erall Heating Efficiency: Combustion Efficiency:	Heat Transfer Efficiency		28,846	44,711		1,33333333		5.2		9'525		57.0%	Heat	Transfer	*	18.7%	86.0%	%6.79	69.4%	65.8%	64.1%	26.9%	53.2%	49,9%	
	64,5%	95.59		Btu/h	Btu/h				lb/h		Deg. F		54.0%	Net	Eff	×	14.8%	65.6%	68.0%	85.69	87.0%	63.6%	52.1%	45.5%	36.66	
	Dry Mo.	Alr		30,409	47,133				5.3		290.9		23.9	Alr	Fuel	Ratio	71.8	13.6	10.0	9.2	12.8	16.6	23.3	27.4	30.9	
Air Fuel Ratio (A/F)	Dry Molecular Weight (Md) Dry Moles Exhaust Gas (Nr)	Air Fuel Ratio (A/F)		KJ/h	4/14				Kg/h		Deg, C		1.37	WetWt	Now	W	3.90	3.31	72.27	1.32	0.77	0.41	0,23	0.14	00:00	
atio (A/F)	Sas (Nr).	VF)											64.86	% Wet	Consumed	×	0.00	15.12	41.86	66.28	80.23	89,53	94,19	96,51	100,001	
	29.63	14.33											10'0	Dry Wt.	Now	Wtdn	3.17	2.69	1.84	1.07	0.63	0.33	0.18	0.11	00'0	800
	S.H.C.	1.32											64.86	* Dry	Comsumed	٨	000	15.12	41.86	66.28	80.23	89,53	94.19	96,51	100,00	
													63940	Fue	Total	hput	0	17903	16076	12057	7307	4384	2192	2923	1096	
													4.06	Fuel Properties	Carbon Hydrogen	/12=[=]	4.06	4.06	4,06	4.06	4.06	4.06	4.06	90.4	4,06	
	Com												5.87			/1=[b] /2	6.87	6.87	6.87	6.87	6.87	6.87	6.87	6,87	600 656 2.73 422.33, 20.70 17.49 201.7 23.3 73.5% 48.9% 39.9% 30.9 0.00 100.00 0.00 100% 4.06 6.87 2.74 1991.000 18.70 78.82 20.51 69.4 2.99	
	Combustion Efficiency	Total Input (kJ)	Total Output (kl)	Effic	Total CO (g)								2.74 198		Oxygen Cal	/16= [c] V	274 198	2.74 198	2.74 198	2,74 198	2.74 198	2,74 198	2.74 198	2.74 198		
				Efficiency 64.	- 71								19810.00 18	-	Calorific Mol	Value Fuel	81 00.01861	9810.00 18	9810.00 18	81 00:01861	91 00.0186.	93,00,00	19810,00 18	81 00,01861	-	
	%5'86	62,844 59	40,546 38	64.5%	79.70								18.70	MW	Moisture	Fuel Burnt	18.70 78	18.70 7.81	18,70 75	18.70 75	18.70 72	7 07.81	18.70 75	37 07.81		
		59,605	38,456 (6							^			79.37		(m	[4]	78.93 24	2 82 2	79,84	79.91	79.67	79.48 2	79.12 2	18.94 20		
		(Bto)	(Bto)					Load Weight (kg)	Fuel Heating	Value in kJ/kg - CV			21.05 1.77	Mass Balance	(moles/100 mole dry flue gas)	[n] [w]	20.94 0.40	21.11 2.15	21,18 2,94	21.20 3.17	21.13 2.29	21.08 1.75	20.99 1.25	20.94 1.06		
								(kg) 3.90	ting HHV				7 6.03	ance	dry five ga	100	0 I.31	5 7.40	4 10.12	7 10.91	9 7.89	5 6.03	5 4.17	3,46		
	Moisture	Initial Dr	2						VHJ /	19810.00 18328.69			0.03			E	1000	000	2 -0.01	10.0-1	-0.02	10'0-	50'0			
	Moisture of Wood (wet basis):	Initial Dry Weight Wido (kg)	Maisture Content Dry							9 Btu/lb			0.18	kg Wood per	100 mole dfp	N.	0.04	0.21	0.29	0.32	0.23	0.17	0.12	0,11	800	

CBI

Der soll

	2.29		peanpo	¥	000	-0.19	-0.46	-0.31	-0.46	-0.11	0.78	1.97	907
	79.70		Grams Produced	8	000	13.00	1.55	0.54	000	3.91	13.73	30.99	15.97
	933		Chem	Loss 2	0	121	-10	-12	-26	33	182	423	220
SUMS	41642		Total	Output	0	11743	10925	8378	4897	2788	1143	1331	437
	21365,92		Sensible and	Latent Loss	000	6038.95	5160,84	3691.10	2436.58	1563.51	867.33	1169.28	438,32
İ	933	L	=	Loss 1	0	121	-10	.12	-36	H	182	423	220
	22299		Total	stol	0	6160	5151	3679	2411	1597	1050	1592	629
AVERAGE	9112.77	Total	550	Rate	16874.38	6816.05	6347,40	5044.74	6535.94	7214.56	9483.70	10791.70	11906.46
	6085,40			M2O Fuel MC	626.12	691.91	718.74	717.20	696.28	679 59	663.01	650.82	64L72
	16119.81	nel)		HZO Comb	1600.76	1870.77	1945.82	1941.31	1889.68	1839.47	1745.61	1673.18	1613.20
un.		Energy Losses (IU/Itg of Dry Fuel)	atthrent	CH4	830.42	11.61	-31.87	-29.14	-70.44	-28.60	395.99	751.00	1076.95
SUMS	7040.01 10147.47 36105.87 2882.72	(In) sessor	Hue Gas Constituent	NZ	8186.95	3141.18	2785,64	2560.92	3060,36	3485.25	4183.64	4323.24	4378.69
	10147.47	Energy		8	3364.39	149.79	20.05	9.30	000	183.44	1283.62	2156.58	2970.30
	7040.01			05	2102.58	482,79	300.76	242.72	443.77	615.02	876.92	962.71	1012.75
	3633,64			200	163.17	491.21	608.25	602.43	516.28	440.38	334.92	264.16	212.84
	297.16	Room	Тепр	×	297.59	297.59	297.04	297.59	297.59	297.04	297.04	296.48	296 48
	8947.12	17.0		HZO	5031.13	10180.27	12279.99	12159.37	10522.37	9216.25	7918.51	6964.32	6251.87
	7423.29 10817.23	ange - Amblent to Stack Temperature		CH4	5635.43	12430.29	15474.23	15303.67	12916.84	11075,36	9316.17	77.7508	7145.35
	7423.29	ent to Stack	nstituent	NZ	4160.86	8450.08	10207.32	10106.50	8736.10	7644.57	6562.16	5767 34	5174 70
	7493.27	inge - Ambi	Flue Gas Constituent	8	4206.08	8528.09	10295.13	10193.69	8815.83	7717.54	6627.47	5826.57	5229.03
	7769.75	Heat Content Cha		02	4332 19	8850.71	10715.80	1060901	9153.81	7997.92	6855.27	6018.00	5395.09
	10660.80	Heat		200	5792.48	12185.38	14915,80	14760.89	12625.99	10951.06	9318.74	8134.41	7262.42
	550.43	Stack	Тетр	¥	441.48	585.37	642.59	639.82	594.82	558.15	\$22.04	494.82	474.82
	12.78	A 10.00	Moisture	Present	12.78	12.78	12.78	12.78	12.78	17.78	12,78	12.78	12.78
	33.81			H20	32.67	34.55	34.59	34.59	34.68	34.59	33.64	32.85	32.12
	£1:959			N2	1967,61	371.73	272.91	253.39	350.31	455.91	637,54	749.51	846.17
	0.36	Table No.	of Dry Woo	¥	0,93	-0.01	-0.04	0.03	90.0	-0,03	0,44	0.84	1.20
	3.91	100	Moles per kg of Dry Wood	8	11.72	0.51	0.07	0.03	000	0.63	4.43	7.50	1031
13650	132.42		2	05	485.34	54 55	28.07	22.88	48.48	76.90	127.92	159.97	187.72
977709	36.54			502	28.17	40.31	40.78	40.81	40.89	40.21	35.94	32.47	29.31

CBI

317 48 73 6.87 43 90

8 £ 6 £

18.70 3.17 23.00

Moisture Content MCwbr

Dirigo Laboratories, Inc.

Manufacturer: Stoll

Model: High Valley Date: 1/28/2013

 Run:
 4

 Control #:
 10

 Test Duration:
 80

 Output Category:
 4

	HHV Basis	LHV Basis
Overall Efficiency	64.5%	69.7%
Combustion Efficiency	98.5%	98.5%
Heat Transfer Efficiency	65.5%	70.8%

HHV Output Rate (kJ/h)	30,409	28,846	(Btu/h)
Burn Rate (kg/h)	2.38	5.24	(lb/h)
Input (kJ/h)	47,133	44,711	(Btu/h)

Test Load Weight (dry kg)	3.2	7.0	dry lb
MC wet (%)	18.70		
MC dry (%)	23.00		
Particulate (g)	3.21		
CO (g)	80		
Test Duration (h)	1.333333333		

Emissions	Particulate	CO
g/MJ Output	0.08	1.97
g/kg Dry Fuel	1.01	25.12
g/h	2.41	59.77
lb/MM Btu Output	0.18	4.57

Air/Fuel Ratio (A/F)	14.33
----------------------	-------

Test Results in Accordance with CSA B415.1-10

Technician: <u>Mu MM</u>

Default Fuel Values

	D. Fir	Oak
HHV (kJ/kg)	19,810	19,887
%C	48.73	50
%Н	6.87	6.6
%0	43.9	42.9
%Ash	0.5	0.5

Page 90 07145

				0.039	70,000							lb/lb-mole	lb/lb-mole	%	드	#,				ft/sec.	scfm	scfm							
			Pt.8	0.038	70							29.00	28.56	4.00	-0.400	0.196	66.0			13.19199 ft/sec.	148.8183 scfm	147.723 scfm							
			Pt.7	0.042	70						1	MW(dry):	MW(wet):	nel H20:	nel Static:	Tunnel Area:	Pitot Tube Cp:												
			Pt.6	0.041	70							Dilution Tunnel MW(dry):	Dilution Tunnel MW(wet):	Dilution Tunnel H2O:	Dilution Tunnel Static:	Tur	Pitot			city:	Flow:	nel Flow:							
		Information	Pt.5	0.036	70							Diluti	Diluti		D					Tunnel Velocity:	Intial Tunnel Flow:	Average Tunnel Flow:							
		Tunnel Traverse Information	Pt.4	0.040	70															_	=	Q		Notes:					
	HIGH VALLEY	F	Pt.3	0.036	0,4				STOVE	AVGT	272.6	380.4	442.2	472.4	527	539.6	531	492.2	441.2					2					
			Pt.2	0.040	7.0		5		BOTTOM		323	368	486	546	526	524	519	498	465										
	Model Designation		Pt.1	0.042	70		9	URES	TOP		244	753	853	781	926	920	798	578	444										
PREBURN		•		dP	Temperature			TEMPERATURES	BACK		200	195	215	245	265	290	301	324	294							Ī			
Д							2		RIGHT	SIDE	281	286	327	400	444	462	202	519	494										
									LEFT	SIDE	315	300	330	390	444	502	532	542	509										
			10			80	-	JR.	FLUE	DRAFT	-0.091	-0.101	-0.099	-0.09	-0.106	-0.095	-0.092	-0.07	-0.065										
	014-S-1-1 Al	9_27_12 4	ERVAL:						SCALE	READING	10.5	7.4	4.8	2.9	6.5	4.3	2.9	2.3	2.1										
В	<u> </u>	DAIE: 9_RUN#: 4	READING INTERVAL:			Run Time:					0	10	20	30	40	20	09	70	80										

										_				_			-		7		-
											7										
																					T
													W				-				
											5										
_	_						_														
		STOVE	AVGT																		
5		BOTTOM																			
		BO.																			
4	TURES	BACK TOP																			
	TEMPERA	Y)																			258.7778
		BA		L																	258
7		RIGHT	SIDE																		
1		LEFT	SIDE																		429.3333
L		_		_	_				-						_						42
		FLUE	DRAFT																		
		SCALE	READING																		
			ET																		
(3	В	+				L														

Run #

Date:

9/27/12

lb/lb-mole 28.56 [lb/lb-mole 29.00 Dilution Tunnel MW(dry): Dilution Tunnel MW(wet):

Dilution Tunnel H20:

-0.400 In H20 4.00 % Dilution Tunnel Static:

0.196 Tunnel Area: Pitot Tube Cp: 0.039

0.038 Pt.8 0.042 Pt.7 Pt.6 0.041 Pt.5 0.036 Dilution Tunnel Traverse Data 01 0.040 Pt.4 70 0.036 0.040 Pt.2 0.042 Pt.1 Temperature dР

Tunnel Velocity:

13.192 ft/sec. 148.82 scfm Intial Tunnel Flow:

Average Tunnel Flow 147.72 scfm

CBI

	30										15	72	7.5	76	76	7.5	75	74	74													
AVG	30 3							-		AMBIENT	TEMP																					
END	3						%		9	METER	TEMP	91	91	93	96	86	66	101	102													
MID	30						23		ın.	FB	INT	6034.17	6033.68	6033.63	6033.46	6033.14	6032.95	6032.7	6032.38													
BEG	30			SS			-		4 TURES	FB REAR	TEMP	276	214	226	243	258	272	272	267													
-			1			IN-HG	JRE DB		3 TEMPERATURES	FILTER	TEMP	9, 6	83	83	80	79	79	78	78													
				RIAL:		10	FUEL MOISTURE DB		2	FLUE	TEMP	335	769	692	611	545	480	431	395									10				-
74.0				PROBE MATERIAL:		®		IN-HG	п	TUNNEL	TEMP	4 5	74	74	73	73	7.2	73	72													
	BAROMETRIC		į		1494	<0.01				Weight	Chg	0	2.3	2.1	1.2	8.0	0.4	0.2	0.3													
ROOM TEMP (F)	BAF				#	(CFM)	VOLUME	@		Scale	Weight	3.7	5 2	2.9	1.7	6.0	0.5	0.3	0													
- 82	_				REAR FILTER #:	FINAL LEAK RATE (CFM)	ON			-E	(%	NA 163	101	100	100	101	101	100	100													
					REAR FILTER #					П	FT/SEC	10101	13.101	13.101	13.089	13.089	13.077	13.089	13.077													
	1			1.014	8	IN-HG	:R #:	(CFM):		_	VAC	-0.04	-1.34	-2	-1.46	-1.8	-0.04	0	-0.88													
				TOR:		10	MBIENT FILTE	FINAL LEAK RATE (CFM):		ORIFICE	DELTA H	90.0	1.98	1.97	2	2	2	1.99	1.99									Ī				
				METER Y FACTOR:		®	<u>[₹</u>	副		TUNNEL	DELTA P	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039													The second secon
BTN			10		1493	<0.01	80			SAMPLE	RATE(FT3/MIN)	0.000	0.141	0.141	0.141	0.142	0.143	0.143	0.143													
	9_27_12	4	TERVAL:	ij	#	TE (CFM):		1 1	TIME:	or .		0.000	2 828	4.234	5.646	7.070	8.498	9.926	11.359													
TECHMICIA	DAMA	RUN #:	READING INTERVAL:	SAMPLE BOX:	FRONT FILTER #:	FINAL LEAK RATE (CFM):	Run Time:		TEST START TIME:	П	ы	0	3 5	30	40	50	09	70	80								P	age	e 1	03 (of 1	

By Not

		AMBIENT	TEMP											75
9		METER	TEMP											96
2		£	LNI											
4	ATURES	FB REAR	TEMP											
3	TEMPERATURES	FILTER	TEMP											
2		FLUE	TEMP											531
1		TUNNEL	TEMP											73
1		Weight	Chg											
		Scale	Weight											
		Proportional	Rate (%)											100.7
		급	FT/SEC				İ							13.090
		FILTER	VAC											
		ORIFICE	DELTA H											1.99
		TUNNEL	DELTA P											0.039
		SAMPLE	RATE(FT3/MIN)											
TIME:			VOLUME											11.359
TEST START TIME:		С	t I	3										

																																					T.
																																		1			
										Ī	-					1	1	1																			
									STOVE	WGT	411	439	457	450	443	437	420	399								1										- E	
								9	METER	+	8 8			96	86			102						1													
						N-HG	Ì	2	Т	+	408	388	384	384	385	390	403	403									l								1		
				SS		10 Ni		4	FB	REAR	386	813	880	792	859	559	477	418							1												
			!	RIAL:	0	8)		3 4	FILTER		78	83	83	81	98	79	79	78																		Ì	
				PROBE MATERIAL:	1496	<0.01		7	RIGHT	SIDE	469	387	400	434	465	490	477	454																			
						ATE (CFM):		-	LEFT	SIDE	481	391	397	421	449	473	473	453		7	1																
				1	KEAK FILIEK #:	FINAL LEAK RATE (CFM):	1		FILTER	VAC	1111	-1.09	-1.7	-1.62	-1.53	-1.34	4.11	-1.36					100														
				0.982		DH-HG	12.4		ORIFICE	DELTA H	0 2	1.99	2.03	2	2.02	1.99	2	2.02																			
				ACTOR:		92	Firebox Delta T		FLUE	DRAFT	0.09	-0.1	-0.1	-0.08	-0.09	-0.08	-0.07	-0.07																			
				METER Y FACTOR:	0	9)			PROPORTIONAL	RATE	102	101	100	101	001	100	100	100																			
014-5-1-1	BTN		10	8	1495	<0.01	80		100	RATE(FT3/MIN)	0.139	0.137	0.138	0.139	0.139	0.139	0.139	0.140																			
		9_27_12	ERVAL:	71 1		TE (CFM):			-	Ä	1.393	2.765	4.141	5.527	6.916	8,305	9.697	11.097																			
log #	TECHNICIA	DATED RUN	READING INTERVAL:	SAMPLE BOX :	FRONI FILIER #:	FINAL LEAK RATE (CFM):	Run Time:			1	10	20	30	40	20	09	70	80												P	'ag	e 1	05	of	14	5	

Brown

By Me

	STOVE	AVGT									12	140
	MACTED	WILLER									96	
,	FB	ВОТ				Ī			7-1		399	
IRES	FB	REAR									617	
TEMPERATURES	24.11	ricien									80	
4	RIGHT	SIDE									443	
,	LEFT	SIDE									440	
	FILTER	VAC		-							1.317778	
	ORIFICE	DELTA H									-0.076 2.00625 -1.317778	
	FLUE	DRAFT									-0.076	
	PROPORTIONAL	RATE									100.628	
	SAMPLE	VOLUME RATE(FT3/MIN)									0.139	
	GAS METER	DLUME R.						_			11.097	

338

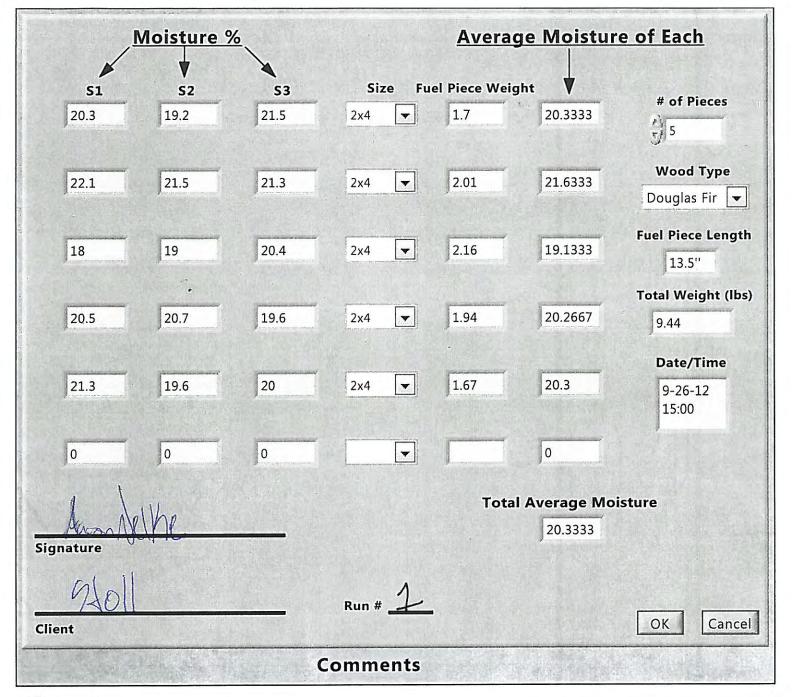
Page 106 of 145

Brown

				feet/second	dscf/hour	dscf	ш		THE STREET	in-h20	min	m B	0.00016 grams/dscf	1.44 grams/hour 2.47 grams/hour		
Average Gas Velocity in Dilution Tunnel - vs Average Gas Flow Rate in Dilution Tunnel - vs Average Gas Flow Rate in Dilution Tunnel - vs Average Gas Flow Rate in Dilution Tunnel - vs Average Gas Flow Rate in Dilution Tunnel - vs Average Gas Flow Rate in Dilution Tunnel - vs Average Gas Flow Rate in Dilution Tunnel - vs Average Gas Meter Temperature Average Detta p Average Detta H Total Time of Test Total Time of Test Average Detta H Total Time of Test Average Detta H Total Time of Test Average Detta H Total Particulates Average Gas Meter Temperature Average Detta H Total Time of Test Average Gas Meter Temperature Average Detta H Total Time of Test Average Gas Meter Temperature Average Detta H Total Sample Volume Average Gas Meter Temperature Average Betta H Total Time of Test Average Detta H T		SAMPLE B INFORMATION	11.10	13.19	8863.38	10.43	73.2	0.039	96	2.01	80	1.7	0.00		grams/hour	102.3
Average Gas Meter Temperature Sample Volume of Total Sample Volume (Standard Conditions) - Vmstd 11.03 Average Gas Flow Rate in Dilution Tunnel - Osd 8863.38 Total Sample Volume (Standard Conditions) - Vmstd 11.03 Average Cas Meter Temperature 56 Average Delta P 1.99 Total Time of Test 80 Total Particulates Particulates Adjusted Emission Rate Adjusted Emissions Average Emissions Average Cas Meter Temperature 0.039 Average Delta H 1.99 Total Particulates Particulates 0.00 Farticulate Concentration (dry-standard) 0.00 Farticulate Concentration (Ary-standard) 0.00				feet/second	dscf/hour	dscf	14		<u> </u>	in-h20	min	Jmg	grams/dscf	grams/hour grams/hour	2.41	
Average Gas Velo Average Gas Flow Ral Total Sample Volume (Star		SAMPLE A INFORMATION	11.36	13.19	8863.38	11.03	73.2	0.039	96	1.99	80	1.7	0.00015	1.37		7:26
		12	Total Sample Volume - Vm	Average Gas Velocity in Dilution Tunnel - vs	Average Gas Flow Rate in Dilution Tunnel - Qsd	Total Sample Volume (Standard Conditions) - Vmstd	Average Tunnel Temperature	Average Delta p	Average Gas Meter Temperature	Average Delta H	Total Time of Test	Total Particulates	Particulate Concentration (dry-standard)	Particulate Emission Rate Adjusted Emissions	AVERAGE ADJUSTED EMISSIONS	% OF AVERAGE
	JOB NUMBER		BURN RATE			FILTER A PARTICULATE	FILTER B	PARTICULATE								

Stoll Trailers, Inc.

Model - High Valley 1300 Distributed by: Stoll Fireplace


EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Supporting Data and Notes

Run 2

ment pa	rallel or				R&D	Y/N	41	
	rallel or	3 = 1				1		
100	Mg. C							
		Vol > 1.5	≤ 3.0 ft	3	Vol > 3	.0 ft ³		
1	4x		2 2 2 4	1		AxA	4x	
13.	5	Inches	ລ					
								Weight (Lhe) \
)			α	Hvdroni	c Heater	1		Weight (Lbs) V
) S1	S2	S3	S4	Hydroni S5	c Heater		6 (%)	cleats
S1		S3				AVG	6 (%)	
S1 PZ	21.7	S3 Z1.5				21.7	6 (%)	cleats
S1 72 72.7	21.7	S3 Z1.5				21.7 22.3	6 (%)	cleats
S1 PZ	21.7 22.6 21.6	S3 Z1.5 Z1.5 Z0Z				21.7 22.3 21.1 20.8	6 (%)	cleats
S1 77 72.7 71.4	21.7	S3 Z1.5				21.7 22.3 21.1	G (%)	cleats
S1 72.7 71.4 20.6	21.7 22.6 21.6 21.4	53 21.5 21.5 20.2 20.2				21.7 22.3 21.1 20.8	6 (%)	cleats
S1 72.7 71.4 20.6	21.7 22.6 21.6 21.4	53 21.5 21.5 20.2 20.2				21.7 22.3 21.1 20.8	S (%)	cleats
S1 72.7 71.4 20.6	21.7 22.6 21.6 21.4	53 21.5 21.5 20.2 20.2				21.7 22.3 21.1 20.8	G (%)	cleats
S1 72.7 71.4 20.6	21.7 22.6 21.6 21.4	53 21.5 21.5 20.2 20.2				21.7 22.3 21.1 20.8	6 (%)	cleats
S1 72.7 71.4 20.6	21.7 22.6 21.6 21.4	53 21.5 21.5 20.2 20.2	S4	S5	S6	21.7 22.3 21.1 20.8	#DIV/0!	cleats
	13.		13.5 Inches	4x 2x4	13.5 Inches	13.5 Inches	13.5 Inches	13.5 Inches

Date

Signature

I UCI LUAU IIIIVIIII ALIUII Client Date Project Number 5066 Firebox Volume (ft3) R&D Y/N Longest useable measurement parallel or perpendicular to front of unit. Test Fuel Charge Range Coal bed range (lbs) $Vol > 1.5 \le 3.0 \text{ ft}^3$ $Vol > 3.0 ft^3$ $Vol \le 1.5 \text{ ft}^3$ 2x4 2x4 2x4 4x 4x4 4x 13.5 Inches Fuel Piece Length Run# Weight (Lbs) With Hydronic Heater cleats S2 **S4 S5 S6** AVG (%) Fuel S1 **S3** Piece

Fest Run Fuel Moisture (db) 20.7 1 20.6 20.6 21 19 19.8 2 19.7 20.8 3 19.9 26.1 19.9 4 20.8 20.2 21.9 5 22-3 20.3 6 8 9 10 #DIV/0! Fuel Load Moisture AVG

Total weight - 8.86

Signature	Date

I WOI LOUG ITTOTTTIGHOTT Project Number Client Date 9/27/12 STOCC R&D Firebox Volume (ft3) Y/N Longest useable measurement parallel or perpendicular to front of unit. Test Fuel Charge Range Coal bed range (lbs) $Vol > 3.0 \text{ ft}^3$ $Vol > 1.5 \le 3.0 \text{ ft}^3$ $Vol \le 1.5 \text{ ft}^3$ 4x 2x4 2x4 2x4 4x4 4x Inches Fuel Piece Length Run# Weight (Lbs) With Hydronic Heater cleats Fest Run Fuel Moisture (db) **S6** AVG (%) Fuel Piece **S1** S2 **S3 S4** S5 7.1.2 22.6 1 72.6 23 2 228 3 22.5 4 22-1 5 227 6 8 9 10 #DIV/0! 23 Fuel Load Moisture AVG Total weight: 8.58 Date Signature

Supplemental Data:

) /
Client: Stoll		Date: 9/2	26/12
Model: 1300		Run No.:	1
Project No.: 014- Tracking No.: 0		Stack Diame	eter:6in
	ermination: (< 0.005 in H ₂ O		101/04
Smoke Capture:/C	etestin H ₂ O	Post Test	_in H₂O
Smoke Capture/C	76		
Room Air Velocity	: (within 2 ft of unit & <50 ft/r	min without fire hurning)	
	retestft/min		ft/min
		10001000	
Pitot Tube Leak Ch	eck: (> 3.0 in H2O for 15 sec	c)	
	H ₂ O for <u>⊘ 0</u> sec. Post Te		sec.
10 lb. Scale Audit:			
Pretest: /D	lbs	Post Test: 10	lbs
		12 10	4
Tunnel Cleaned:	Tu	unnel Velocity: 3.76	
Analyzer Calibrate	d:		
	Initial	Middle	End
P _{bar} (inHg)	30	30	30
Amb Temp. (°F)	76	79	A
b. / . /			0

Notes:

Supplemental Data:

Client: Stoll		Date: 9	27/13
Model: 1300		Run No.:	2
Project No.: 014-S- Tracking No.: 01		Stack Diam	eter:6in
Induced draft deter Unit Air Velocity: Preto Smoke Capture: <u>/</u> 0		Post Test	in H₂O
	(within 2 ft of unit & <50 ft, test		
	ck: (> 3.0 in H2O for 15 se O for <u>20</u> sec. Post T		<u>2c)</u> sec.
Pretest: /> Tunnel Cleaned:/		Post Test: 8	
Analyzer Calibrated:			
	Initial	Middle	End
P _{bar} (inHg)	36	30	30
Amb Temp. (°F)	69	72	74
Notes:			

CBI

Supplemental Data:

Client: Stoll		Date: <u>9/</u>	37/13
Model: 1300		Run No.:	3
Project No.: 014-S Tracking No.: 01		Stack Diamet	er:6in
Induced draft deter Unit Air Velocity: Pret Smoke Capture:/2			in H₂O
	(within 2 ft of unit & <50 ft/letestft/min		ft/min
	eck: (> 3.0 in H2O for 15 sec 20 for 2 sec. Post Te		sec.
10 lb. Scale Audit: Pretest: /0	_lbs	Post Test: /D	lbs
Tunnel Cleaned:		unnel Velocity: 13.24	7
Analyzer Calibrated	:		
	Initial	Middle	End
P _{bar} (inHg)	30	30	30
Amb Temp. (°F)	d'	82	78

Notes:

Supplemental Data:

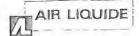
Client: Stoll		Date: 9/2	27/13
Model: 1300		Run No.:	4
Project No.: 014-S-C Tracking No.: 010		Stack Diame	ter:6in
Induced draft determ Unit Air Velocity: Pretes Smoke Capture:/のる		Post Test	_in H₂O
	within 2 ft of unit & <50 ft/m estft/min		ft/min
Roon Air Velocity: Pret		Post Test < 5.0	
Roon Air Velocity: Pret Pitot Tube Leak Chec Pretest:in H₂C	estft/min k: (> 3.0 in H2O for 15 sec)	Post Test < 5.0	
Pitot Tube Leak Chec Pretest:in H ₂ C 10 lb. Scale Audit:	estft/min k: (> 3.0 in H2O for 15 sec)	Post Test < 5.0	sec.
Pitot Tube Leak Chec Pretest:in H ₂ C 10 lb. Scale Audit: Pretest:/ o	estft/min k: (> 3.0 in H2O for 15 sec) forsec. Post Tes	Post Test <u>〈 5.〉</u> st:in H2O for <u>~ 2</u>	seclbs
Roon Air Velocity: Pret Pitot Tube Leak Chec Pretest:in H ₂ C 10 lb. Scale Audit: Pretest:/ Tunnel Cleaned:	estft/min k: (> 3.0 in H2O for 15 sec) forsec. Post Tes	Post Test < 5.0 in H2O for 20 Post Test: 10	seclbs
Pitot Tube Leak Chec Pretest:in H ₂ C 10 lb. Scale Audit: Pretest: Tunnel Cleaned: Analyzer Calibrated:	est 5. ft/min k: (> 3.0 in H2O for 15 sec) for 20 sec. Post Tes lbs Tui	Post Test < 5.0 it:in H2O for _20 Post Test:/0 nnel Velocity:/3./9: Middle	sec. lbs
Roon Air Velocity: Pret	est 5, ft/min k: (> 3.0 in H2O for 15 sec) for 20 sec. Post Tes lbs Tu	Post Test < 5.0 it:in H2O for <a>20 Post Test:10 nnel Velocity: <a>13.19	sec.

Technician Signature:

Date: //36//3

Stoll Trailers, Inc.

Model - High Valley 1300 Distributed by: Stoll Fireplace


EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Appendix G: Calibration and Q/A

Air Liquide America Specialty Gases LLC

RATA CLASS

Dual-Analyzed Calibration Standard

500 WEAVER PARK RD, LONGMONT, CO 80501

Phone: 888-253-1635

Fax: 303-772-7673

CERTIFICATE OF ACCURACY: Interference Free Multi-Component EPA Protocol Gas

Assay Laboratory - PGVP Vendor ID: A42012

AIR LIQUIDE AMERICA SPECIALTY GASES LLC

500 WEAVER PARK RD LONGMONT, CO 80501

P.O. No.: 24

Document #: 45160164-001

Customer

DIRIGO LABORATORIES, INC

JOHN STEINERT

11785 SE HWY 212 SUITE 30

CLACKAMAS OR 97015

US

ANALYTICAL INFORMATION

Gas Type : OCC

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure G-1; September, 1997.

Cylinder Number: Cylinder Pressure***:

AAL021796 1143 PSIG

Certification Date:

05Mar2012

Exp. Date: 27Feb2015

Batch No: LGM0049653

CERTIFIED CONCENTRATION (Moles)

4.27

%

+/- 1%

ACCURACY**

TRACEABILITY Direct NIST and VSL

CARBON DIOXIDE

COMPONENT

NITROGEN

CARBON MONOXIDE OXYGEN

17.2 17.0

+/- 1% +1-1% Direct NIST and VSL Direct NIST and VSL

BALANCE

... Do not use when cylinder pressure is below 150 psig. ** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

EXPIRATION DATE TYPE/SRM NO. NTRM 2639

27Apr2017 01Mar2013 NTRM 1800

01Feb2016 **NTRM 2658**

KAL004146 K015614 K012175

(Z = Zero Gas

CYLINDER NUMBER

CONCENTRATION 0.974 % 17.87 %

COMPONENT

CARBON MONOXIDE CARBON DIOXIDE

OXYGEN

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

HP/6890/US00034440 FTIR//0929062

OXYMAT/6E/W5-951

DATE LAST CALIBRATED 20Feb2012

10.03 %

10Feb2012

20Feb2012

ANALYTICAL PRINCIPLE

TCD/FID FTIR

PARAMAGNETIC

ANALYZER READINGS

r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

R = Reference Gas T = Test Gas

Calibration Curve

CARBON MONOXIDE

Date: 27Feb2012 Response Unit:AREA

Z1 = 0.00000 R1 = 1876082. T1 = 8259396. R2 = 1867768. Z2 = 0.00000 T2 = 8217214.

Z3 = 0.00000 T3 = 8224550. Avg. Concentration: 4.262

B3 = 1862374

Date: 05Mar2012 Response Unit: AREA Z1 = 0.00000 R1 = 1828660. T1 = 8068158.

R2 = 1824750. Z2 = 0.00000 T2 = 8068443. Z3=0.00000 T3=8055063, R3=1820843. Avg. Concentration:

4.274

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r = 1.000000

A = 0.00101487Constants: B=5.2891E-07 C=-5.157E-16

E=

CARBON DIOXIDE

Date: 28Feb2012 Response Unit:%

Z1 = 0.00483 R1 = 17.88295 T1 = 17.19822 R2 = 17.88429 Z2 = 0.00546 T2 = 17.20909

Z3=0.00649 T3=17.21928 R3=17.89547 17.19 Avg. Concentration:

OXYGEN

Date: 29Feb2012 Response Unit: VOLTS

Z1 = 0.00000 R1 = 10.04000 T1 = 17.04000 T2 = 17.04000

R2 = 10.05000 Z2 = 0.00000 Z3 = 0.00000 T3 = 17.04000 R3 = 10.06000 17.04

Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 9.99996E - 1

Constants: D = 2.30000E-5

A = 0.00000E + 0B=9.14230E-1 C = 1.04890E-2

E = 0.00000E + 0

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r = 1.000000

Constants:

A = -0.00483773

B=0.99911168 C= D= E=

APPROVED BY: ___

CBI

Avg. Concentration:

JOHN ROZOF

Page

1 of 1

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Expiration Date: May 25, 2014

Airgas Specialty Gases 11711 S. Alameda Street Los Angeles, CA 90059-2130 (323) 357-6891 Fax: (323) 567-3686 http://www.airgas.com

Part Number:

Cylinder Number:

E04NI77E15A0575

CC280566

Laboratory:

ASG - Los Angeles - CA

PGVP Number:

B32011

Analysis Date:

May 25, 2011

Reference Number: 48-124265336-1

Cylinder Volume:

151 Cu.Ft.

Cylinder Pressure:

2015 PSIG

Valve Outlet:

590

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

ANALYTICAL RESULTS						
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty		
CARBON MONOXIDE	2.500 %	2.494 %	G1	+/- 1% NIST Traceable		
CARBON DIOXIDE	10.00 %	10.47 %	G1	+/- 1% NIST Traceable		
OXYGEN	10.50 %	10.11 %	G1	+/- 1% NIST Traceable		
NITROGEN	Balance					

		CA	ALIBRATION STANDARDS	
уре	Lot ID	Cylinder No	Concentration	Expiration Date
NTRM	060608	CC206095	22.51% OXYGEN/NITROGEN	May 01, 2016
NTRM	080614	CC267714	1_959% CARBON MONOXIDE/NITROGEN	Oct 15, 2012
NTRM	040604	XC034266B	19.84% CARBON DIOXIDE/NITROGEN	May 15, 2012
		А	NALYTICAL EQUIPMENT	
Instrument	/Make/Model		Analytical Principle	Last Multipoint Calibration
SIEMENS %	CO2		NDIR	May 21, 2011
HORIBA % C	:0	-	NDIR -	May 03, 2011
Siemens %O	2		PARAMAGNETIC	May 20, 2011

Triad Data Available Upon Request

Notes:

Approved for Release

e 1 of 48-124265336-1

CBI

CERTIFICATE OF BATCH ANALYSIS

NITROGEN - ULTRA HIGH PURITY-PURE

Airgas Nor Pac 11900 NE 95th St., Ste 400 Vancouver, Washington 98682 (360) 944-4000 Fax: (360) 944-4100

www.airgas.com

Part Number:

NI UHP200BA

Cylinder Analyzed:

6564&

Laboratory:

NOR - Portland - OR

Analysis Date:

May 10, 2011

Lot#:

16-101518687-3

Reference Number:

16-101518687-3

Cylinder Volume:

230 Cubic Feet

Cylinder Pressure:

2200 PSIG

Valve Outlet:

580

ANALYTICAL RESULTS

	THE TALCTED AND ADDRESS OF THE PARTY OF THE		
Component	Requested Purity		Certified Concentration
NitrogenUltraHighPurity	99.999%		99.999%
CO + CO2	< 1 PPM	<	1 PPM
Moisture	< 1 PPM	<	1 PPM
Oxygen	< 1 PPM	<	1 PPM
THC	< 0.5 PPM	<	0.5 PPM

Cylinders in Batch:

1175778Y, CG969822, N-459011

Notes:

Impurities verified against analytical standards traceable to NIST by weight and/or analysis.

Approved for Release

Page 1 of 16-101521404-1

CBI

CERTIFICATE OF CALIBRATION

Dwyer Instruments, Inc. P.O. Box 373 Michigan City, IN 46361 Fax: (219) 872-9057 Phone: (219) 879-8000

Date February 23, 2012 Customer: DIRIGO LABORATORIES Due February 23, 2013 Address: 11785 SE HIGHWAY 212 PO# SUITE 305, CLACKAMAS, OR 97015 Model # 475-000-FM-NIST % of Full Scale Sales Accuracy: 0.5 Order# S642420

Full Scale Range: 1 Units: IN:W.C RGA#

Certificate No. 12DWY10-0112

This certifies that the instrument listed below has been calibrated using a standard having an accuracy as listed, and is traceable to the NATIONAL INSTITUTE OF

STANDARDS AND TECHNOLOGY (NIST).

Calibration Standard Information

Serial No.

Instrument Information

0.06

% Full Scale

Master Gage Accuracy:

Last Cal. Date | LD. No. of Instrument being Calibrated | 06/01/11 | NX0202013

Base: 26915 26915-40696 06/01/11 NX0202013

Module 1: N/A N/A N/A Customer's LD: No. (If Different)

Module 2: N/A N/A N/A

Cert Rpt No.

Condition X Notes:

Of Meter New After Repair As Received

	NEW I AS RECEIVED	AFTER REPAIR
Customer	Dwyer Master % Error	
Gage Setting	Gage Reading Full Scal	
0.0000	0.0000 0.00%	
0,2000	0.2014 -0.14%	
0.4000	0.4007 +0.07%	
0.6000	0.6019 -0.19%	
0,8000	0,8010 -0.10%	
1.0000	0.9996 0.04%	
	0.00%	
	0.00%	
	0.00%	
	0.00%	

Signed: Procedure No.: 658047-00

Customer Please Note: When requesting recalibration please mention the LD, number of your instrument; when requesting other information on the calibrated instrument please mention the Certificate No.

PRESCURE

Rev. 10 (05/07)

Certificate of Calibration

Certificate Number: 469735

Dirigo Laboratories, Inc. 11785 SE Hwy, 212

Suite 305

Remarks:

Clackamas, OR 97015

Property #: 051

Department. N/A

Serial #: 051

User. N/A

PO: 7

Order Date: 02/04/2011

Authorized By. N/A

*Recommended Due: 02/08/2016
Environment: 18 °C 36 % RH

As Received: Within Tolerance
As Returned: Within Tolerance

Action Taken: Calibrated

Technician: 92

Description: Mass

Procedure: DCN 500901

Make: Unknown Model: 10 LBS.

Hoceanc, DCN 300901

Accuracy: NIST HB 105-1 (F CLASS)

*Any number of factors may cause the calibration item to drift out of calibration before the recommended interval has expired

Standards Used Nomenclature Std ID Manufacturer Model Due Date Trace ID 432A Sartorius C-44 Microbalance 5.1g 11/08/2011 461791 Rice Lake 1mg-200g (Class O) Mass Set 11/08/2011 460936 503A 550A And (A&D) Co. HP-30K Balance 30 Kg 02/02/2012 467177

Parameter Measurement Data Measurement Description Range Unit Reference UUT Variance Min Max Before/After Mass Class F - 10 lb 4535924.0 4536081 -157.0 4535474.0 4536374.0 mg

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc.
JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

Issued 02/08/2011

Rev # 14

Inspector

Reviewer

	F	UNCTIONAL	CHECKS		
12.50	ENTER AD:	HYSTE Load Inc		REPEATABILITY:	
Loading	105.0000	Test Weight	Readings	Test	105.0000
Right	104.9957	0%	0.0000	1st	104.9980
Left	104.9993	(RI) 50%	104.9980	2nd	104.9980
Front	104.9985	100%	00% 209.9983 3rd	3rd	104.9980
Back	104.9970	(R2)50%	(R2)50% 104,9980		104.9980 104.9980
As Left	PASS	0% 0.0000		5th	
		As Left	PASS	As Left	PASS
Tolerance Deviation of lowest and highest reading within 0.1%		Tolera The Difference must be wi	of R1 and R2	The second secon	rance f lowest and g within 0.1%

Remarks:			

We sincerely thank you for your business. Please call us at 1-800-356-4662 for all your calibration needs. Cleaning and preventive maintenance were preformed before calibration of this equipment.

Calibrations are performed under ambient conditions using manufacturer's and customers specifications for the PASS/FAIL results Results may be influenced by the age of the instrument and environmental conditions. Calibration data should be reviewed to insure that the instrument is performing to its intended accuracy. Calibrations conforms to ANSI / NCSL Z540-1 specifications and CAL-CERT Procedure CP-002

Accredited by the International Accreditation Service, Inc. (IAS) under Calibration Laboratory Code CL-108. This Laboratory meets the requirements of ISO/IEC 17025 AND ANSI/NCSL Z540-1

This Certificate is issued as a statement of the fact that on this date the above instrument(s) had an accuracy as indicated. It should not be construed or regarded as a Guarantee or Warranty of any kind (in favor of the client, the client's customers, or the public at large) that the instrument(s) will continue to retain the same percentage (%) of accuracy or efficiency as determined on the date when the calibration, and adjustments if required, was performed and reported by "CAL-CERT", since the calibrator has absolutely no control over the future operation, damage, maintenance, repairs, and overall condition of the instrument(s) and hereby expressly disclaims any and all liability for damage or loss sustained by all parties arising or resulting from deterioration, obsolescence, malfunction, or substandard performance of said instrument(s); which shall be deemed to be and which shall remain the sole responsibility of the machines regular custodian, owner, and/or manufacturer

This report shall not be reproduced except in full, without written approval from Cal-Cert

Date: GARRETT WALKER Service Engineer:

July 19, 2012

Signature: Technical Manager: MARSHALL DOYLE

REPORT#: 42426-D-01

11/4/2011 Revision 9

Report and Certificate of Calibration

Cal-Cert

6709 S.E. Lake Road Milwaukie, OR 97222 (800)356-4662 Fax (503)654-9670

Zip: 97015

Report #:

42426-D-01

Customer Name:

Dirigo Laboratories

Customer Address:

11785 SE Highway 212, Suite 305

City: Contact: Clackamas John Steinert

Service Address:

11785 SE Highway 212, Suite 305,

Clackamas, OR 97015

State: OR

Calibration Standards

14-RH/00351 Comark Temp/Humidity Meter S/N. 06237360168 Cal Date: 9/14/11 Duc Date: 9/14/12 Vendor CC NIST#: 39322-C-20 10-kg1/00209 Rice Lake Weight Set 5kg-1mg S/N. 43334/22696 Cal Date: 7/11/11 Duc Date 7/11/13 Vendor QCS NIST#: 20111555

Instrument Data

ASTM E-898 July 19, 2012 Calibration Date: Reference: Calibration Due Date: July 19, 2013 Number of Ranges: One Indicating System: Digital Calibration Frequency: 12 Months Scientech Temperature: 75 °F Manufacturer: ZSA 210 **Humidity:** RH Model Number: Digital Balance Asset #: #048 Type: 28095 Service Location: Service Address Serial #: As Found: PASS Scale Capacity: 210 grams As Left: **PASS**

		Scal	e Linear Test				
Instru	ment Range:	210.0000 grams		Resolution:	0.0001 grams		
Calibration Standard	As Found UUT	As Found Error	As Left UUT	As Left Error	As Left % of Error	Tolerance (As Left) Allowable Error	
grams	grams	grams	grams	grams	grams	Error	Condition
0.0000	0.0000	0.0000	0.0000	0.0000	0,000	0.0000	PASS
21.0000	20.9992	-0.0008	20.9992	-0.0008	-0.004	0.0210	PASS
42.0000	41.9981	-0.0019	41.9981	-0.0019	-0.005	0.0420	PASS
63.0000	62.9985	-0.0015	62.9985	-0.0015	-0.002	0.0630	PASS
84.0000	83.9984	-0.0016	83.9984	-0.0016	-0.002	0.0840	PASS
105.0000	104.9980	-0.0020	104.9980	-0.0020	-0.002	0.1050	PASS
126.0000	125.9964	-0.0036	125,9964	-0.0036	-0.003	0.1260	PASS
147.0000	146.9959	-0.0041	146.9959	-0.0041	-0.003	0.1470	PASS
168.0000	167,9958	-0.0042	167.9958	-0.0042	-0.002	0.1680	PASS
189.0000	188.9957	-0.0043	188.9957	-0.0043	-0.002	0.1890	PASS
210.0000	209.9983	-0.0017	209.9983	-0.0017	-0.001	0.2100	PASS
105.0000	104.9980	-0.0020	104.9980	-0.0020	-0.002	0.1050	PASS
0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	PASS

Expanded Uncertainty± 0.000351 grams

Scale CF-002-1 Revision 9 11/4/2011

Stoll Trailers, Inc.

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Appendix H: Example Calculations

Stoll Trailer, Inc. High Valley 1300 Report # 014-S-001-1 Prepared by Dirigo Laboratories 01/21/2013

Example Calculations for Run 1:

 $= 0.141 \text{ ft}^3/\text{min}$ 1. Sample Rate (ft³/min) = $\frac{(Interval_2 \text{ gas meter volume} - Interval_1 \text{ gas meter volume})}{(2.828 \text{ ft}^3 - 1.41616 \text{ ft}^3) / 10 \text{ min}}$ Interval range (min)

П × (100) (Run time)(Gas meter Volume)(Initial Tunnel velocity)(Average meter temp + 460)(Tunnel temp + 460) (Interval time)(Total meter volume)(Tunnel velocity)(Average tunnel temp + 460)(Meter temp + 460) П Proportional Rate % *ج*i

= 99.7 % (80 min)(2.828 ft³-1.4160 ft³)(13.101 ft/sec)(90 °F + 460)(73 °F + 460) (10 min)(11.359ft³)(13.101 ft/sec)(96 °F + 460)(73 °F + 460) П

Initial Tunnel Flow (scfm) = $(5129.4)x(Pitot tube Cp)x(((\Delta P_1)^{0.5}(\Delta P_2)^{0.5}(\Delta P_3)^{0.5}(\Delta P_4)^{0.5}(\Delta P_5)^{0.5}(\Delta P_5)^{0.5}(\Delta P_7)^{0.5}(\Delta P_8)/8)x((Ave tunnel temp + 460)/((Ave P_{bar} + 460))x((Ave P_{bar}$ $(\text{static/13.6}))(\text{MW}_{\text{wet}}))^{0.5}$ $\times (528/(\text{Ave tunnel temp + 460})) \times ((\text{Ave P}_{\text{bar}} + (\text{static/13.6}))/29.92) \times (\text{Tunnel area}) \times (1-(\text{\%H2O/100})) = (\text{Static/13.6}) \times (\text{Metunnel area}) \times (\text{Metunn$ ω.

 $= ((5129.4) \times (0.99) \times (((0.042)^{0.5} (0.040)^{0.5} (0.036)^{0.5} (0.040)^{0.5} (0.036)^{0.5} (0.041)^{0.5} (0.042)^{0.5} (0.042)^{0.5} (0.038)^{0.5})/8) \times ((70 + 460)/(30 + 460)) \times ((70 + 460) \times (10 + 460)) \times ((10 + 460) \times$ $(-0.4/13.6))(28.56)))^{0.5} \times (528/(70 + 460)) \times ((30.0 + (-0.4/13.6))/30)) \times (0.196 \text{ ft}^2)) \times (1-(2.00/100))$

148.82 scfm

- 4. Tunnel Velocity (Vs) =
- Vs (ft/sec) = (85.49)(Pitot Tube Cp)(Ave. Tunnel ΔP)^{0.5} ((Ave. tunnel temp + 460)/(Ave. P_{bar} + (Tunnel static/13.6)) (Dilution tunnel MW)))^{0.5}
- = $(85.49)(0.99)(0.039 \text{ inH}_2\text{O})^{0.5} \left((70 \text{ °F} + 460) / (30 \text{ inHg} + (-0.400 \text{ inH}_2\text{O}/13.6)) (28.78 \text{ lb/lb-mole}) \right)^{0.5}$
- = 13.192 ft/sec

II

5. Average Gas Flow Rate in Dilution Tunnel – Qsd

Qsd (dscf/hr) = (3600)(1-(Dilution tunnel %H2O/100))(Tunnel area)(Vs)(528/29.92) (Ave.P_{bar} + (Dilution tunnel static/13.6))/(Ave. tunnel temp + 460)

- = 8863.38 dscf/hr = $(3600)(1-(4.00 \% / 100))(0.196 \text{ ft}^2)(13.192 \text{ ft/sec})(528/29.92)(30 \text{ inHg} + (-0.400 \text{ inH}_2\text{O}/13.6))/(73^{\circ}\text{F} + 460))$
- 6. Total Sample Volume (Standard Condition) Vmstd

Vm = Total sample volume

 $Vmstd (dscf) = \left(\frac{(Vm)(Meter y factor)(528 / 29.92 inHg)}{(Vmerage P_{bar} + (Orifice \Delta H / 13.6))} \right)$

(Average meter temp + 460)

((11.36 cf)(1.014)(528 / 29.92 inHg)) ((30 inHg)+(2.0/13.6))

(96 °F + 460)

Page **2** of **3**

П

Stoll Trailer, Inc. High Valley 1300 Report # 014-S-001-1

Prepared by Dirigo Laboratories 01/21/2013

Particulate Concentration (dry standard) – (grams/dscf) = 7. = [(Total particulate / 1000) / (vmstd)]

(1.7 mg / 1000) / (11.03 dscf)

0.00015 g/dscf п

> Particulate Emission Rate (grams / hour) = ∞.

= (Particulate concentration)(Qsd) =

0. 00015 g/dscf)(8863.38 dscf/hr)

1.33 g/hr

II

Dry Wood Burn Rate (kg/hr) = 6

= (1-(Average Fuel moisture / (100 + Average fuel moisture)))(60 min/hr)(Fuel weight / Run time)(0.453593 kg/lb))

= ((1-(23 % / (100 + 23 %))(60 min/hr)(8.6 lb / 80 min)(0.453593 kg/lb)

2.38 kg/hr П

Page **3** of **3**

Stoll Trailers, Inc.

Model - High Valley 1300 Distributed by: Stoll Fireplace

EPA Certification Testing Project # 014-S-001-1

Prepared by Dirigo Laboratories, Inc.

January 28, 2013

Appendix I: Installation and Operations Manual

Installation, Operation, & Safety Handbook

MODEL 1300 FREESTANDING STOVE

High Valley Stoves by Stoll

153 Hwy. 201 Abbeville, SC 29639 www.highvalleystoves.com 800.421.0771

Safety Notice: If this wood stove is not properly installed, a house fire may result. For your safety, please follow the installation directions. Contact local building or fire officials about Postrictions and installation inspection in your area.

HIGH VALLEY STOVES BY STOLL

153 Hwy. 201 Abbeville, SC 29620

P: 800.421.0771

 $\textbf{W:} \ www.highvalleystoves.com$

E: sales@highvalleystoves.com

Page 131 of 145

Installation, Operation & Safety Handbook for Model 1300

Table Of Contents

SECTION 1	GENERAL SAFETY INFORMATION	Pg. 4
SECTION 2	CLEARANCES & INSTALLATIONS Clearances Floor Protector Installation Pedestal Installation Blower Installation Stove Pipe Installation Masonry Flue Installation Masonry Fireplace Installation Mobile Home Installation Chimney & Vent Connectors	Pg. 6
SECTION 3	USE AND CARE OF GLASS	Pg. 11
SECTION 4	OPERATING INSTRUCTIONS	Pg. 12
SECTION 5	STOVE OVERVIEW	Pg. 12
SECTION 6	WIRING DIAGRAM	Pg. 13
SECTION 7	SPECIFICATIONS	Pg. 13
SECTION 8	WARRANTY	Pg. 14
	WARRANTY REGISTRATION CARD	Pg. 15

Please read this entire manual before you install and use your new room heater. Failure to follow instructions may result in property damage, bodily injury, or even death.

SECTION 1: GENERAL SAFETY INFORMATION

Proper installation of any wood burning stove is necessary for the safety and effectiveness of its operation. Check with your dealer regarding arrangements for installing your free standing model. Installation must meet strict specifications of the National Fire Protection Association and all local fire and building codes.

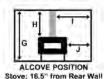
For additional information on using your heater (wood stove) safely, send for Using Coal and Wood Stoves Safely, NFPA No. 81974, from the National Protective Association, 470 Atlantic Avenue, Boston, MA 02210.

The High Valley 1300 has been tested by Omni Test Laboratories, Inc.

SAFETY PRECAUTIONS

- ASH DISPOSAL: Ashes should be placed in a metal container with a tight-fitting lid.
 The closed container of ashes should be placed on a non-combustible floor or on
 the ground, well away from all combustible materials, pending final disposal. If the
 ashes are disposed of by burial in soil or otherwise locally dispersed, they should
 be retained in the closed container until all cinders have thoroughly cooled.
- 2. LIQUID FUELS: Never use gasoline type lantern fuel, kerosene, charcoal lighter fluid, or similar liquids to start or "freshen up" a fire in this stove. Keep all such liquids well away from the stove at all times.
- 3. FUEL STORAGE: Store wood in a dry environment. Do not place wood within stove clearances (see pg. 6) or within the space needed for loading stove or ash removal.
- 4. CREOSOTE FORMATION & REMOVAL: When wood is burned slowly, it produces tar and other organic vapors which combine with expelled moisture to form creosote. The creosote vapors condense in the relatively cool chimney flue of a slow burning fire. As a result, creosote accumulates on the flue lining. When ignited, this creosote makes an extremely hot fire. The chimney connector and chimney should be inspected at least once every two months during the heating season to determine if creosote build-up has occurred. If creosote has accumulated, it should be removed to reduce the risk of a chimney fire. Contact your local municipal or provincial fire authority for information on how to handle a chimney fire.
- **5.** PRE-FABRICATED CHIMNEY: Not for use with a pre-fabricated chimney.
- 6. CHIMNEY & CONNECTOR: 6" MSG black steel connector pipe with UL 103 HT listed chimney suitable for solid fuels (use supports and spark arrestors as required by NFPA 211), or code-approved masonry chimney with a flue liner.
- INSPECTION CODES: The installation of the stove must comply with state and local requirements and be inspected by the state or local building inspector, if required.
- 8. LOCATION: This stove is approved for use in mobile homes (please read mobile home installation section in this manual). WARNING: DO NOT INSTALL IN SLEEP-ING ROOM. The stove should be placed centrally in relationship to the area to be heated. High traffic areas should be avoided, and the stove should be located in a relatively draft-free area. A 14" clearance to any furnishings must be maintained.
- 9. Inspect chimney connector and chimney twice monthly, and clean if necessary.
- 10. Keep stove away from combustibles. Follow suggested distances.
- **11.** The use of aluminum type "B" gas vent is unsafe and prohibited by the National Fire Prevention Association Code.
- 12. The area through which the chimney pipe will travel should be inspected. If the installation requires cutting a hole in the ceiling, check the attic for wires, ducts, etc, that may interfere.

- 13. It is vitally important that single wall pipe is never closer than three times the diameter of the pipe from a combustible surface. Never use single wall pipe through a combustible surface.
- **14.** Use only an insulated, all fuel chimney to vent the hot gases out of the house. It will reduce the amount of creosote buildup and improve the draft needed to vent hot gases from the stove.
- **15.** Use a 6" diameter insulated thimble, or a 6" diameter insulated all-fuel chimney section when passing through a combustible wall or ceiling. See NFPA 211 for recommended type, clearances, and warnings.
- **16.** Do not use more than one elbow in the stove pipe.
- **17.** Ensure that the ventilating pipe does not extend so far into chimney flue that it blocks air flow.
- **18.** Particular attention should be paid to the point where the flue passes through a wall or ceiling. This penetration should always be made with insulated pipe and the proper connector, thimble, and mounting accessories.
- 19. The longer the pipe and the greater amount of elbows, the greater the chance of dangerous creosote and ash buildup. Modern stoves are engineered to achieve maximum heat dispersal without lengthy vents eliminating a potentially hazardous situation.
- **20.** Use heavy gauge stove pipe: at least 18 gauge with 6" diameter.
- **21.** The top of the flue must be at least 3' higher than the roof at the point of exit. In pitched roofs, the top of the stovepipe must be at least two feet to the highest point of the roof and at least ten feet away.
- 22. DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE SERVING ANOTHER APPLIANCE.
- **CAUTION:** Do not operate in an extreme manner as to overfire the unit. If unit, chimney, or chimney connector glows, you are overfiring.
- SAFETY NOTICE: If this wood stove is not properly installed, a house fire may result. For your safety, follow all installation directives, cautions, and safety notices. Contact local building officials about restrictions and installation inspection in your area.
- **CAUTION:** Do not connect to or use in conjunction with any air distribution ductwork unless specifically approved for such installations.
- **A** CAUTION: Do not use chemicals or fluids to start the fire.
- **CAUTION:** Do not burn garbage or flammable fluids such as gasoline, naphtha or engine oil.
- **CAUTION:** Hot while in operation. Keep children, clothing and furniture away. Contact may cause skin burns.


SECTION 2: CLEARANCES & INSTALLATIONS

FREESTANDING STOVE

INSTALL WITH MINIMUM CLEARANCES TO WALL AS SHOWN (IN INCHES)
DIMENSIONS ARE WITH SINGLEWALL PIPE, DOUBLEWALL PIPE MAY REDUCE CLEARANCES

Flue: 19" from Rear Wall

FLOOR PROTECTOR 1/2" with K=0.84 / R=1.19

CONTACT YOUR LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPECTION IN YOUR AREA FIGURE 1.

CLEARANCES

• Normal: A=12"(305mm) B=15.5"(394mm) C=22"(560mm) D=14"(356mm)

• Corner: E=8"(203mm) F=18"(457mm)

Alcove: G=84"(2134mm) H=54"(1372mm) I=24"(610mm) J=16"(406mm)
 Unit must be 16.5" (419mm) and Flue must be 19" (483mm) from Rear Wall.

• Floor Protector: K=8"(203mm) L=18"(457mm) | Type II, UL 1618

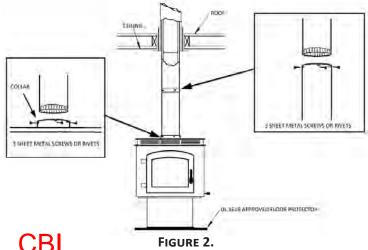
■ Note: Clearances can only be reduced only by means approved by the applicable regulatory authority.

FLOOR PROTECTOR INSTALLATION

- 1. This Stove requires the use of a Type II, UL 1618 Approved, Floor Protector, with minimum rating of R = 0.84 / K = 1.19.
- 2. Floor protector must be placed under the stove; for USA it must extend 16 inches beyond the front and 8" beyond the sides of the stove and for Canada it must extend 18 inches beyond the front and 8" beyond the sides and back of the stove.
- Floor protector must also extend under the chimney connector and at least 2" beyond each side.

PEDESTAL INSTALLATION

- 1. Place pedestal on floor protector where stove will be installed.
- 2. Carefully place the 1300 stove body on top of the pedestal. Center stove on pedestal, using caution to not damage floor or floor protector.
- **3.** Align holes with threads in the stove with appropriate holes in pedestal.
- 4. Insert bolts through pedestal into stove and tighten securely.
- **5.** If the unit is installed in a mobile home, see mobile home installation instructions.


BLOWER INSTALLATION

- 1. Blower assembly is shipped pre-installed, so no installation is necessary
- Blower assembly is shipped pre-wired, so no wiring is necessary. However, if the wires become disconnected for any reason, please refer to Section 5: Wiring Diagram

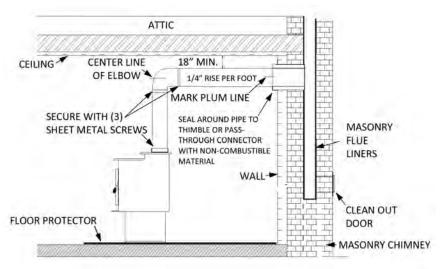
STOVE PIPE INSTALLATION

- 1. Minimum clearance to combustibles must be maintained as shown in figure 1.
- 2. Combustible wall and ceiling materials includes wood, cloth, vinyl, paper, etc. Wood covered with plastic is also considered combustible. The 10" clearance for the stove also applies for plain stovepipe used in constructing the chimney pipe. Clearance is applicable to the parallel wall or the ceiling either when the wall is unprotected or when Type 2 Floor Protector is affixed to the wall without spacing.
- **3.** Select a spot for the stove. Inspect the area that the stovepipe will be running through to connect with the existing chimney. Use an insulated connector if a combustible wall is between the chimney and stove.
- **4.** If the area the pipe runs through looks acceptable, move the stove into position. Be sure the stove has proper clearance from combustible areas.
- 5. If a new chimney is being installed, follow the instructions of the chimney pipe manufacturer or have it installed by a certified chimney installer.
- 6. Install the chimney connector/thimble. If it is passing through combustible walls, it must be insulated, such as triplewall pipe. Also, if it is possible to maintain 10" between your smoke pipe and a combustible wall, use an insulated chimney pipe. Consult your local building code and regulations.
- 7. Chimney connector shall not pass through an attic or roof space, closet or similar concealed space, or floor, or ceiling. Where passage through a wall or partition of combustible construction is desired, the installation must conform to CAN/CSA-B365: Installation Code for Solid-Fuel Burning Appliances and Equipment.
- 8. After the pipe connector is in place, run the stovepipe with the crimped edge down from the chimney connector to the stove. The crimped edges must be down so creosote accumulating on the walls of the stovepipe can run back into the stove and not out the joints of the pipe.
- 9. Any horizontal pipe should be pitched upward toward the chimney at least 1/4" for each horizontal foot.
- 10. Check the installation to determine the pipe is connected properly using three sheet metal screws per joint; that the proper distances have been maintained from combustible surfaces with the stove and the stovepipe; and the chimney is in good repair and is installed properly.

Page 136 of 145

7

MASONRY FLUE INSTALLATION (USING SINGLE WALL PIPE)


 Before connecting these units to a masonry chimney, determine that masonry flue pass-through connector thimble meets NFPA-211 Code and local building codes and is a minimum of 18" from ceiling. If connector thimble does not meet these codes, pass-through connector must be modified.

NOTE: Floor protector must be under horizontal pipe exit

- **2.** Connectors may pass through walls or partitions constructed of combustible material if connector is:
 - (a) Either listed for wall pass-through or is routed through a device listed for wall pass-through and is installed in accordance with conditions of listing.
 - (b) Selected or fabricated in accordance with conditions and clearances as stated in NFPA-211 Code. Any unexposed metal that is used as part of a wall pass-through system and is exposed to flue gases shall be constructed of stainless steel or other equivalent material that will resist corrosion, softening or cracking from flue gases at temperatures up to 1800°F. In addition, a connector to a masonry chimney shall extend through wall to the inner face or liner but not beyond, and shall be firmly cemented to masonry.

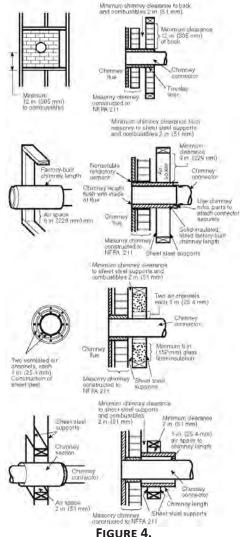
EXCEPTION: A thimble may be used to facilitate removal of the chimney connector for cleaning, in which case the thimble shall be permanently cemented in place with high-temperature cement.

- 3. Once through-the-wall thimble codes are met, simply connect chimney collar to wall pass-through connector using #24 ga. minimum, blue or black steel connector pipe as follows:
 - (a) Maintain 1/4" rise per foot (horizontal length) from appliance to chimney.
 - (b) Connect each section so crimped end faces downward.
 - (c) Secure each section to each other using at least three (3) sheet metal screws or rivets (See Figure 2. Page 7).
 - (d) Use three (3) sheet metal screws to fasten pipe to connector collar on heater. (See Figure 2. Page 7).

CB

FIGURE 3.

MASONRY FIREPLACE INSTALLATION


Connect to Masonry Fireplaces where the following conditions are met:

- (1) There is a connector that extends from the appliance to the flue liner.
- (2) The cross-sectional area of the flue is no smaller than the cross-sectional area of the flue collar of the appliance, unless otherwise specified by the appliance manufacturer.
- (3) The cross-sectional area of the flue of a chimney with no walls exposed to the outside below the roofline is no more than three times the cross-sectional area of the appliance flue collar.
- (4) The cross-sectional area of the flue of a chimney with one or more walls exposed to the outside below the roofline is no more than two times the cross-sectional area of the appliance flue collar.
- **(5)** If the appliance vents directly through the chimney wall above the smoke chamber, there shall be a noncombustible seal below the entry point of the connector.
- **(6)** The installation shall be such that the chimney system can be inspected and cleaned.
- (7) Means shall be provided to prevent dilution of combustion products in the chimney flue with air from the habitable space.

MOBILE HOME INSTALLATION FOR USA ONLY! - OPTIONAL AIR KIT REQUIRED

- 1. Position the stove onto the floor protector in its final location, making sure all minimum clearances are met. Anchor stove to floor with sufficient size and length bolts to go through the pedestal mount, floor protector, home floor and subfloor.
- 2. The stove should be grounded to chassis with a #8 AGW copper wire or equivalent.
- 3. Place the outside air kit on the rear of the unit with the elbow turned toward the bottom of the unit and fasten with 2 tec screws supplied. Connect a 4" flex pipe (not supplied) to the outside air kit, place a screen on the other end and insert through the wall of the home.
- 4. CAUTION: THE STRUCTURAL INTEGRITY OF THE MOBILE HOME FLOOR, WALL, AND CEILING/ROOF MUST BE MAINTAINED.

CHIMNEY CONNECTORS AND VENT CONNECTORS

.....

Additional Requirements:

- Insulation material used as part of wall pass-through system shall be of noncombustible material and shall have a thermal condu ctivity of 1.0 Btu-in./hr-ft - °F (4.88 kg-cal/hr-m - °C) or less.
- All clearances and thicknesses are minimums; larger clearances and thicknesses shall be permitted.
- Any material used to close up an opening for the connector shall be of noncombustible material.
- 4. A connector to a masonry chimney, except for System B, shall extend in one continuous piece through the wall pass-through system and the chimney wall to the inner face of the liner, but not beyond.

- 1. Minimum 3.5 in. (90 mm) thick brick masonry wall framed into combustible wall with a minimum of 12-in. (305-mm) brick separation from clay liner to combustibles. Fireclay liner (ASTM C 315, Standard Specification for Clay Fire Linings, or equivalent), minimum 5%-in. (16-mm) wall thickness, shall run from outer surface of brick wall to, but not beyond, the inner surface of chimney flue liner and shall be firmly cemented in place.
- 2. Solid-insulated, listed factory-built chimney length of the same inside diameter as the chimney connector and having 1 in. (25.4 mm) or more of insulation with a minimum 9-in. (229-mm) air space between the outer wall of the chimney length and combustibles. The inner end of the chimney length shall be flush with the inside of the masonry chimney flue and shall be sealed to the flue and to the brick masonry penetration with non-water-soluble refractory cement. Supports shall be securely fastened to wall surfaces on all sides. Fasteners between supports and the chimney length shall not penetrate the chimney liner.
- 3. Sheet steel chimney connector, minimum 24 gauge [0.024 in. (0.61 mm)] in thickness, with a ventilated thimble, minimum 24 gauge [0.024 in. (0.61 mm)] in thickness, having two 1-in. (25.4-mm) air channels, separated from combustibles by a minimum of 6 in. (152 mm) of glass fiber insulation. Opening shall be covered, and thimble supported with a sheet steel support, minimum 24 gauge [0.024 in. (0.61 mm)] in thickness. Supports shall be securely fastened to wall surfaces on all sides and shall be sized to fit and hold chimney section. Fasteners used to secure chimney section shall not penetrate chimney flue liner.
- 4. Solid-insulated, listed factory-built chimney length with an insidediameter 2 in. (51 mm) larger than the chimney connector and having 1 in. (25.4 mm) or more of insulation, serving as a passthrough for a single wall sheet steel chimney connector of minimum 24 gauge [0.024 in. (0.61 mm)] thickness, with a minimum 2-in. (51-mm) air space between the outer wall of chimney section and combustibles. Minimum length of chimney section shall be 12 in. (305 mm). Chimney section concentric with and spaced 1 in. (25.4 mm) away from connector by means of sheet steel support plates on both ends of chimney section. Opening shall be covered, and chimney section supported on both sides with sheet steel supports of minimum 24 gauge [0.024 in. (0.61 mm)] thickness. Supports shall be securely fastened to wall surfaces on all sides and shall be sized to fit and hold chimney section. Fasteners used to secure chimney section shall not penetrate chimney flue liner.

SECTION 3: USE, CARE & REPLACEMENT OF GLASS

Although glass has excellent heat resistance and strength characteristics, it can crack through improper use. To achieve maximum utility and safety of glass in a wood burning stove, we advise the following:

- Inspect the glass regularly. If you detect a crack or break, extinguish the fire immediately and replace the glass. Do not operate unit with broken glass.
- Do not slam the door or otherwise impact the glass. When closing the door, logs or other objects should not protrude or impact the glass.
- 3. Do not clean when hot, allow unit to cool completely before cleaning. Do not clean the glass with abrasive materials which may scratch or damage the glass. Scratches on the glass can develop into cracks or breaks. Oven cleaner may be used, but do not get any on the paint as it will remove paint.
- **4.** Never put substances which can ignite explosively in the stove since even small explosions in confined areas can blow out the glass.

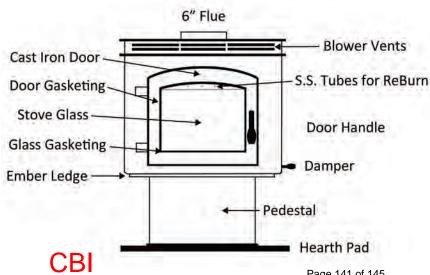
REPLACEMENT GLASS INSTALLATION

- 1. Replacement Glass must be 1/4" pyro-ceramic, "stove" glass. Do not use unsuitable substitute replacement glass.
- 2. Glass can be installed in the door with the door mounted on the stove.
- 3. Remove bracket bolts from the door and remove all pieces of broken glass if any.
- **4.** Remove backing from the gasket. Center gasket on edge of replacement glass. Firmly press gasket onto glass edge of all sides. Cut excess gasket.
- 5. Place glass in opening. Position brackets in place, insert bolts and tighten carefully.

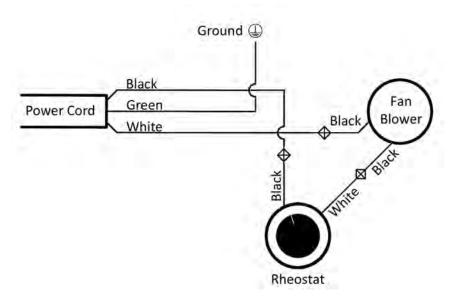
A CAUTION: Glass should be snug but not excessively tight.

NOTICE

Gold plated surface must be cleaned with glass cleaner and a soft rag before firing the first time, or fingerprints will remain.


DO NOT CLEAN WHEN HOT!

SECTION 4: OPERATING INSTRUCTIONS


- **1.** Pull the damper slide all the way open. (slide is on lower right side of the unit)
- 2. Always build fire directly on stove floor, do not raise with andirons or grates. Be careful to not build fire too close to the glass door. Roll up pieces of newspaper and place in the firebox towards back of stove. Place kindling on top of paper and light paper. After fire is burning, place larger pieces of wood on the fire.
- 3. This stove is designed to burn dry, seasoned hardwood. Use wood fuel only, no other solid or liquid fuels can be used.
- **4.** Avoid coming in contact with the firebrick or air tubes when loading wood.
- Once the fire is burning, you can control the fire by using the control on the right hand side of the unit. Pull to open and push to close. Do not alter damper for increased firing for any reason.
- **6.** Keep door(s) closed when burning; inspect gasket monthly and replace if needed.
- 7. Due to the nature of a non-catalytic stove, there may be smoke spillage into the room from the combustion air chamber when starting the stove. After the stove has been burning for a time, this will cease.

CAUTION: When opening the door make sure the draft control is fully open (pull to open) to avoid smoke spillage into the room.

SECTION 5: STOVE OVERVIEW

SECTION 6: WIRING DIAGRAM

SECTION 7: SPECIFICATIONS

Stove Width: 22" Stove Height w/ pedestal: 30"

Stove Depth: 23" Weight: 315 lbs.

Firebox Size: 1.3 cu. ft. Max. Wood Size: 16"
Flue Size: 6" Est. Burn Time: 7 hrs.

Est. BTU Output: 28,846 **Est. Heating Area:** 1500 sq. ft.

Emissions: 3.1 g/Hr Date of Certification: 01/28/2013

Efficiency: 70%

Floor Protector: 1/2" with R = 0.84 / K= 1.19 ratings

SAFETY STANDARD COMPLIANCE

USA UL: UL 1482-2011 **Canadian UL:** ULC-S627-00

SECTION 8: HIGH VALLEY STOVES LIMITED WARRANTY

PRODUCTS GUARANTEED

This limited warranty covers all stoves manufactured by Stoll Fireplace Inc. and carrying the High Valley Stoves brand.

*The warranty will be void if coal is burned in any High Valley wood burning stove.

GENERAL WARRANTY PROVISIONS

High Valley Stoves, warrants the model 1300 against defects in material and workmanship for 5 years as long as it is owned by the original purchaser, provided that (1) stove is installed by an authorized installer: (2) stove has not been repaired by an unauthorized person in any way, so as, in our judgment as manufacturer, performance or reliability is reduced: (3) stove has not been subject to unauthorized modification: (4) the right to repair or replace the stove is at the option and considered judgment of the manufacturer: (5) obligation under this warranty does not include or extend to paint on surface of stove, glass door, nor decor kit an optional attachment.

SPECIFIC WARRANTY PROVISIONS & TIME PERIODS

Period 1: Up to 30 days after purchase.

Stove should be used within 30 days by having a fire started, the blower and heat generated in the owner's home.

Period 2: Up to 90 days after purchase.

All electrical parts are warranted for 90 days from the date of purchase.

Period 3: Up to 5 years from date of purchase.

High Valley Stoves will replace or repair, at its option, any part defective in material or workmanship with the exception of electrical components (blower, thermostat, rheostat, etc ...), damper, damper handles and rod, fireclay castable lining, and all parts not permanently attached to the heating unit. Parts not permanently attached to the heating unit are defined as any part removable with common hand tools. The cost of parts only are included. The customer pays any labor or transportation charges required (owner is responsible for any costs involved with stove or part removal and reinstallation.)

PROCEDURE TO OBTAIN WARRANTY REPAIR

Should you feel that your stove is defective, you should contact your stove dealer for assistance and for the correct procedures to resolve the problem. If for any reason you are dissatisfied with the suggested procedure, you may contact us in writing.

CONDITIONS & EXCLUSIONS

- There is no other express warranty. All implied warranties or merchantability and fitness are limited to the duration of the express warranty.
- High Valley Stoves is not liable for indirect, incidental, or consequential damages in connection
 with the use of the product including any cost or expense of providing substitute equipment
 or service during periods of malfunction or non-use. Some states do not allow limitations on
 how long an implied warranty lasts, so the above limitation may not apply to you.
- Warranty repairs for reimbursement must be performed by an authorized High Valley Dealer, manufacturer's representative, or by customer as directed by dealer or the manufacturer.
- Dealers will receive special instructions regarding minor repairs.
- Warranty void if serial plate has been removed or defaced.
- Warranty gives you specific legal rights and you may also have other rights which vary from state to state.

Cut Horo

OWNER REGISTRATION CARD

NAME:		
Address:		
Сіту:		
PHONE:	EMAIL:	
STOVE WAS PURCHASED AT:		
SELLING PRICE LESS TAX:		
DATE PURCHASED:		
DATE INSTALLED:		
MODEL PURCHASED: 1300		
WOOD STOVE SERIAL NUMBER:		(found on rear of unit)

Remove page from book then fold in half and tape.

From:	
	Place
	Stamp Here
	Here

High Valley Stoves by Stoll 153 Hwy. 201 Abbeville, SC 29620

